The Hamilton–Jacobi equation (HJE) is one of the most elegant approaches to Lagrangian systems such as geometrical optics and classical mechanics, establishing the duality between trajectories and waves and paving the way naturally for quantum mechanics. Usually, this formalism is taught at the end of a course on analytical mechanics through its technical aspects and its relation to canonical transformations. I propose that the teaching of this subject be centered on this duality along the lines proposed here, and the canonical transformations be taught only after some familiarity with the HJE has been gained by the students.
REFERENCES
1.
Cornelius
Lanczos
, The Variational Principles of Mechanics
(
Dover Publications
,
New York
, 1986
).2.
L. D.
Landau
and
E. M.
Lifshitz
, Mechanics
(
Butterworth-Heinemann
,
Amsterdam
, 1976
).3.
Louis N.
Hand
and
Janet D.
Finch
, Analytical Mechanics
(
Cambridge U. P
.,
Cambridge
, 1998
).4.
Herbert
Goldstein
,
Charles
P. Poole
, and
John
Safko
, Classical Mechanics
(
Pearson Education
,
London
, 2011
).5.
M. G.
Calkin
, Lagrangian and Hamiltonian Mechanics
(
World Scientific Publishing Company
,
Singapore
, 1996
).6.
7.
David
Park
, Classical Dynamics and Its Quantum Analogues
(
Springer-Verlag
,
Berlin
, 1990
).8.
Brian
Vohnsen
, “
A short history of optics
,” Phys. Scr.
109
, 75
–79
(2004
).9.
Henry
Crew
, The Wave Theory of Light; Memoirs of Huygens, Young and Fresnel
(
Ulan Press
,
Neuilly sur Seine
, 2012
).10.
V. I.
Arnold
,
K.
Vogtmann
, and
A.
Weinstein
, Mathematical Methods of Classical Mechanics
(
Springer
,
New York
, 2013
).11.
F.
Klein
, “
Über das brunssche eikonal
,” Zeitscrift f. Math. u. Phys.
LXXI(v2)
, 601
–605
(1901
) [Translation by D. H. Delphenich, http://www.neo-classical-physics.info].12.
Leonhard
Euler
, Lettres à une Princesse D'Allemagne
(
Presses Polytechniques et Universitaires Romandes
,
Lausanne
, 2003
).13.
Edmund T.
Whittaker
, A History of the Theories of Aether & Electricity
(
Dover Publications
,
New York
, 1989
).14.
Herman
Erlichson
, “
Johann Bernoulli's brachistochrone solution using Fermat's principle of least time
,” Eur. J. Phys.
20
, 299
–304
(1999
).15.
16.
R. K. P.
Zia
,
Edward F.
Redish
, and
Susan R.
McKay
, “
Making sense of the Legendre transform
,” Am. J. Phys.
77
, 614
–622
(2009
).17.
Edward A.
Desloge
and
Robert I.
Karch
, “
Noether's theorem in classical mechanics
,” Am. J. Phys.
45
, 336
–339
(1977
).18.
Brandon
Carter
, “
Global structure of the Kerr family of gravitational fields
,” Phys. Rev.
174
, 1559
–1571
(1968
).19.
Larry M.
Bates
and
James M.
Nester
, “
On D'Alembert's principle
,” Comm. Math.
19
, 57
–72
(2011
).20.
Born
Max
, Problems of Atomic Dynamics
(
Dover Publications Inc
.,
Mineola, N.Y
, 2004
).21.
Schrodinger
Erwin
, Collected Papers on Wave Mechanics
(Chelsea Pub Co
,
New York
, 1982
).22.
Jaume
Masoliver
and
Ana
Ros
, “
From classical to quantum mechanics through optics
,” Eur. J. Phys.
31
, 171
–192
(2009
).23.
A.
Sommerfeld
and
J.
Runge
, “
Anwendung der vektorrechnung auf die grundlagen der geometrischen optik
,” Ann. Phys. (Leipzig)
35
, 277
–298
(1911
) [Translation by D. H. Delphenich, http://www.neo-classical-physics.info].24.
Max
Born
and
Emil
Wolf
, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Cambridge U. P
.,
Cambridge
, 1999
).25.
S.
Cornbleet
, “
Geometrical optics reviewed: A new light on an old subject
,” Proc. IEEE
71
, 471
–502
(1983
).26.
Martino
Bardi
and
Italo Capuzzo
Dolcetta
, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
(
Modern Birkhäuser Classics
,
Birkhäuser Basel
, 1997
).27.
Jaume
Masoliver
and
Ana
Ros
, “
Integrability and chaos: The classical uncertainty
,” Eur. J. Phys.
32
, 431
–458
(2011
).28.
F. H. M.
Faisal
and
U.
Schwengelbeck
, “
Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos
,” Phys. Lett. A
207
, 31
–36
(1995
).29.
Vahe
Galstyan
and
David B.
Saakian
, “
Dynamics of the chemical master equation, a strip of chains of equations in d-dimensional space
,” Phys. Rev. E
86
, 011125
(2012
).30.
Pini
Zilber
,
Naftali R.
Smith
, and
Baruch
Meerson
, “
A giant disparity and a dynamical phase transition in large deviations of the time-averaged size of stochastic populations
,” Phys. Rev. E
99
, 052105
(2019
).© 2020 American Association of Physics Teachers.
2020
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.