A linear chain of spheres confined by a transverse harmonic potential experiences localized buckling under compression. We present simple experiments using gas bubbles in a liquid-filled tube to demonstrate this phenomenon. Our findings are supported semi-quantitatively by numerical simulations. In particular, we demonstrate the existence of a critical value of compression for the onset of buckling.

1.
M. G.
Calkin
and
R. H.
March
, “
The dynamics of a falling chain: I
,”
Am. J. Phys.
57
(
2
),
154
157
(
1989
).
2.
E.
Hamm
and
J. C.
Géminard
, “
The weight of a falling chain, revisited
,”
Am. J. Phys.
78
(
8
),
828
833
(
2010
).
3.
J. C.
Géminard
and
L.
Vanel
, “
The motion of a freely falling chain tip: Force measurements
,”
Am. J. Phys.
76
(
6
),
541
545
(
2008
).
4.
A. A.
Domnyshev
,
V. A.
Kalinichenko
, and
P. M.
Shkapov
, “
On two experiments with falling chains
,”
J. Phys. Conf. Ser.
1301
(
1
),
012012
(
2019
).
5.
J. D.
Louck
, “
Exact normal modes of oscillation of a linear chain of identical particles
,”
Am. J. Phys.
30
,
585
590
(
1962
).
6.
D.
Oliver
, “
Oscillation of a paper-clip chain
,”
Phys. Teach.
34
,
446
447
(
1996
).
7.
F.
Behroozi
,
P.
Mohazzabi
, and
J. P.
McCrickard
, “
Remarkable shapes of a catenary under the effect of gravity and surface tension
,”
Am. J. Phys.
62
,
1121
1128
(
1994
).
8.
F.
Herrmann
and
M.
Seitz
, “
How does the ball-chain work?
,”
Am. J. Phys.
50
(
11
),
977
981
(
1982
).
9.
G.
Péter
,
G.
Honyek
, and
K. F.
Riley
,
200 Puzzling Physics Problems: With Hints and Solutions
(
Cambridge U.P
.,
Cambridge
,
2001
), p.
19
20
.
10.
M.
Reinsch
, “
Dispersionfree linear chains
,”
Am. J. Phys.
62
,
271
278
(
1994
).
11.
R. C.
Thompson
, “
Ion coulomb crystals
,”
Contemp. Phys.
56
(
1
),
63
79
(
2015
).
12.
A.
Melzer
, “
Zigzag transition of finite dust clusters
,”
Phys. Rev. E
73
(
5
),
056404
(
2006
).
13.
A. V.
Straube
,
A. A.
Louis
,
J.
Baumgartl
,
C.
Bechinger
, and
R. P. A.
Dullens
, “
Pattern formation in colloidal explosions
,”
EPL
94
(
4
),
48008
(
2011
).
14.
T.
Beatus
,
T.
Tlusty
, and
R.
Bar-Ziv
, “
Phonons in a one-dimensional microfluidic crystal
,”
Nat. Phys.
2
(
11
),
743
(
2006
).
15.
J. E.
Galván-Moya
,
D.
Lucena
,
W. P.
Ferreira
, and
F. M.
Peeters
, “
Magnetic particles confined in a modulated channel: Structural transitions tunable by tilting a magnetic field
,”
Phys. Rev. E
89
(
3
),
032309
(
2014
).
16.
T.
Lee
,
K.
Gizynski
, and
B. A.
Grzybowski
, “
Non-equilibrium self-assembly of monocomponent and multicomponent tubular structures in rotating fluids
,”
Adv. Mater.
29
(
47
),
1704274
(
2017
).
17.
J.
Winkelmann
,
A.
Mughal
,
D.
Weaire
, and
S.
Hutzler
, “
Equilibrium configurations of hard spheres in a cylindrical harmonic potential
,”
EPL
127
,
44002
(
2019
).
18.
H.
Landa
,
B.
Reznik
,
J.
Brox
,
M.
Mielenz
, and
T.
Schätz
, “
Structure, dynamics and bifurcations of discrete solitons in trapped ion crystals
,”
New J. Phys.
15
(
9
),
093003
(
2013
).
19.
M.
Mielenz
,
J.
Brox
,
S.
Kahra
,
G.
Leschhorn
,
M.
Albert
,
T.
Schätz
,
H.
Landa
, and
B.
Reznik
, “
Trapping of topological-structural defects in coulomb crystals
,”
Phys. Rev. Lett.
110
(
13
),
133004
(
2013
).
20.
R. K.
Pal
,
F.
Bonetto
,
L.
Dieci
, and
M.
Ruzzene
, “
A study of deformation localization in nonlinear elastic square lattices under compression
,”
Philos. Trans. R. Soc. A
376
(
2127
),
20170140
(
2018
).
21.
S.
Gonzalez
and
R.
Soto
, “
Active colloidal chains with cilia-and flagella-like motion
,”
New J. Phys.
20
(
5
),
053014
(
2018
).
22.
B. R.
Heazlewood
, “
Cold ion chemistry within coulomb crystals
,”
Mol. Phys.
117
,
1934
1941
(
2019
).
23.
A.
Mughal
,
H. K.
Chan
,
D.
Weaire
, and
S.
Hutzler
, “
Dense packings of spheres in cylinders: Simulations
,”
Phys. Rev. E
85
(
5
),
051305
(
2012
).
24.
M. D.
Abràmoff
,
P. J.
Magalhães
, and
S. J.
Ram
, “
Image processing with ImageJ
,”
Biophotonics Int.
11
(
7
),
36
42
(
2004
).
25.
D. J.
Durian
, “
Foam mechanics at the bubble scale
,”
Phys. Rev. Lett.
75
,
4780
4783
(
1995
).
26.
D. J.
Durian
, “
Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches
,”
Phys. Rev. E
55
,
1739
1751
(
1997
).
27.
F.
Bolton
and
D.
Weaire
, “
Rigidity loss transition in a disordered 2D froth
,”
Phys. Rev. Lett.
65
,
3449
(
1990
).
28.
D.
Weaire
and
S.
Hutzler
,
The Physics of Foams
(
Clarendon Press
,
Oxford
,
1999
).
29.
I.
Cantat
,
S.
Cohen-Addad
,
F.
Elias
,
F.
Graner
,
R.
Höhler
,
O.
Pitois
,
F.
Rouyer
, and
A.
Saint-Jalmes
,
Foams: Structure and Dynamics
(
Oxford U.P.
,
2013
).
30.
A. V.
Chaplik
, “
Instability of quasi-one-dimensional electron chain and the “string-zigzag” structural transition
,”
JETP Lett.
31
(
5
),
275
278
(
1980
).
31.
S.
Hutzler
,
G.
Delaney
,
D.
Weaire
, and
F.
MacLeod
, “
Rocking Newton's cradle
,”
Am. J. Phys.
72
(
12
),
1508
1516
(
2004
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.