We derive an inequality that the parameters of a 1D free-particle Gaussian wave packet with a positive group velocity, approaching a given region x > q, must satisfy such that a negative probability current J exists on q. Local probability conservation implies the counter-intuitive result that the particle detection probability in the region x > q is actually decreasing. The condition J <0 requires the negative correlation of the position and momentum observables of the state, but the time scales for the negative current and anti-correlation regimes are not identical. Using a probability current operator, we obtain an integral representation of J in momentum space for any free particle wave packet. We use this integral representation to distinguish the separate contributions to J by the positive and negative momentum components, and we identify a third contribution to J composed of cross-terms of both momenta. For the specific case of a Gaussian wave packet with a negative correlation between its position and momentum, the positive momentum component can contribute a negative value to the probability current.

1.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantum Mechanics
(
John Wiley and Sons
,
1977
), Vol.
1
.
2.
J. J.
Sakurai
,
Modern Quantum Mechanics Revised Edition
(
Addison-Wesley
,
1994
).
3.
R. W.
Robinett
,
Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples
(
Oxford U. P
.,
2006
).
4.
T. B.
Boykin
, “
An alternative view of the continuity equation in quantum mechanics
,”
Am. J. Phys.
68
,
665
667
(
2000
).
5.
J. M.
Yearsley
,
J. J.
Halliwell
,
R.
Hartshorn
, and
A.
Whitby
, “
Analytical examples, measurement models, and classical limit of quantum backflow
,”
Phys. Rev. A
86
,
042116
(
2012
).
6.
J. J.
Halliwell
,
E.
Gillman
,
O.
Lennon
,
M.
Patel
, and
I.
Ramirez
, “
Quantum backflow states from eigenstates of the regularized current operator
,”
J. Phys. A
46
,
475303
(
2013
).
7.
V.
Delgado
, “
Probability distribution of arrival times in quantum mechanics
,”
Phys. Rev. A
57
,
762
770
(
1998
).
8.
T. B.
Boykin
,
M.
Luisier
, and
G.
Klimeck
, “
Current density and continuity in discretized models
,”
Eur. J. Phys.
31
,
1077
1087
(
2010
).
9.
D. J.
Mason
,
M. F.
Borunda
, and
E. J.
Heller
, “
Quantum flux and reverse engineering of quantum wave functions
,”
Europhys. Lett.
102
,
60005
(
2013
).
10.
E. J.
Heller
, “
Time dependent approach to semiclassical dynamics
,”
J. Chem. Phys.
62
,
1544
1555
(
1975
).
11.
L. F.
Barragan-Gil
and
R.
Walser
, “
Harmonic oscillator thermal density matrix: First-order differential equations for the position representation
,”
Am. J. Phys.
86
,
22
24
(
2018
).
12.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
2007
). Note that Tannor's notation is different from Heller's notation. This paper adheres to the Heller's notation.
13.
A. A. D.
Villanueva
, “
Self-focusing quantum states
,”
Am. J. Phys.
86
,
126
134
(
2018
).
14.
M. V.
Berry
, “
Quantum backflow, negative kinetic energy, and optical retro-propagation
,”
J. Phys. A
43
,
1
15
(
2010
).
15.
D.
Bohm
,
Quantum Theory
, Prentice-Hall Physics Series (
Prentice-Hall
,
1951
).
16.
J. M.
LevyLeblond
, “
Correlation of quantum properties and the generalized Heisenberg inequality
,”
Am. J. Phys.
54
,
135
136
(
1986
).
17.
R. A.
Campos
, “
Correlation coefficient for incompatible observables of the quantum harmonic oscillator
,”
Am. J. Phys.
66
,
712
718
(
1998
).
18.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series and Products
(
Elsevier
,
2007
).
19.
C. W.
Wong
, “
Nonspreading wave packets
,”
Am. J. Phys.
64
,
792
799
(
1996
).
20.
R. W.
Robinett
,
M. A.
Doncheski
, and
L. C.
Bassett
, “
Simple examples of position-momentum correlated Gaussian free-particle wave packets in one dimension with the general form of the time-dependent spread in position
,”
Found. Phys. Lett.
18
,
455
475
(
2005
).
21.
M.
Belloni
and
R. W.
Robinett
, “
The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics
,”
Phys. Rep.
540
,
25
122
(
2014
).
22.
A. J.
Bracken
and
G. F.
Melloy
, “
Probability backflow and a new dimensionless quantum number
,”
J. Phys. A
27
,
2197
2211
(
1994
).
23.
G. F.
Melloy
and
A. J.
Bracken
, “
The velocity of probability transport in quantum mechanics
,”
Ann. Phys.
7
,
726
731
(
1998
).
24.
M.
Penz
,
G.
Grübl
,
S.
Kreidl
, and
P.
Wagner
, “
A new approach to quantum backflow
,”
J. Phys. A
39
,
423
433
(
2005
).
25.
M.
Palmero
,
E.
Torrontegui
,
J. G.
Muga
, and
M.
Modugno
, “
Detecting quantum backflow by the density of a Bose-Einstein condensate
,”
Phys. Rev. A
87
,
053618
(
2013
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.