We outline a general procedure to derive first-order differential equations obeyed by geodesic orbits over two-dimensional (2D) surfaces of revolution immersed or embedded in ordinary three-dimensional (3D) Euclidean space. We illustrate that procedure with an application to a wormhole model introduced by Morris and Thorne (MT), which provides a prototypical case of a “splittable space-time” geometry. We obtain analytical solutions for geodesic orbits expressed in terms of elliptic integrals and functions, which are qualitatively similar to, but even more fundamental than, those that we previously reported for Flamm's paraboloid of Schwarzschild geometry. Two kinds of geodesics correspondingly emerge. Regular geodesics have turning points larger than the “throat” radius. Thus, they remain confined to one half of the MT wormhole. Singular geodesics funnel through the throat and connect both halves of the MT wormhole, perhaps providing a possibility of “rapid inter-stellar travel.” We provide numerical illustrations of both kinds of geodesic orbits on the MT wormhole.

1.
A.
Pressley
,
Elementary Differential Geometry
, 2nd ed. (
Springer-Verlag
,
London, New York
,
2012
).
2.
B. F.
Schutz
,
Geometrical Methods of Mathematical Physics
(
Cambridge U. P
.,
Cambridge
,
1980
).
3.
B. F.
Schutz
,
A First Course in General Relativity
, 2nd ed. (
Cambridge U. P
.,
Cambridge
,
2009
).
4.
L.
Resca
, “
Spacetime and spatial geodesic orbits in Schwarzschild geometry
,”
Eur. J. Phys.
39
(
3
),
035602
(
2018
).
5.
R. T.
Eufrasio
,
N. A.
Mecholsky
, and
L.
Resca
, “
Curved space, curved time, and curved space-time in Schwarzschild geodetic geometry
,”
Gen. Relativ. Gravitation
50
,
159
183
(
2018
).
6.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
New York
,
1973
).
7.
W.
Rindler
,
Essential Relativity: Special, General, and Cosmological
, revised 2nd ed. (
Springer-Verlag
,
Berlin
,
1979
).
8.
R. M.
Wald
,
General Relativity
(
University of Chicago Press
,
Chicago
,
1984
).
9.
H. C.
Ohanian
and
R.
Ruffini
,
Gravitation and Spacetime
, 2nd ed. (
Norton
,
New York
,
1994
).
10.
R.
D'Inverno
,
Introducing Einstein's Relativity
(
Oxford U. P
.,
Clarendon
,
1998
).
11.
J. B.
Hartle
,
Gravity: An Introduction to Einstein's General Relativity
(
Addison Wesley
,
San Francisco
,
2003
).
12.
S. M.
Carroll
,
Spacetime and Geometry: An Introduction to General Relativity
(
Pearson/Addison Wesley
,
San Francisco
,
2004
).
13.
M. P.
Hobson
,
G. P.
Efstathiou
, and
A. N.
Lasenby
,
General Relativity: An Introduction for Physicists
(
Cambridge U. P
.,
Cambridge
,
2006
).
14.
V. P.
Frolov
and
A.
Zelnikov
,
Introduction to Black Hole Physics
(
Oxford U. P.
,
New York
,
2011
).
15.
E.
Poisson
and
C. M.
Will
,
Gravity: Newtonian, Post-Newtonian, Relativistic
(
Cambridge U. P
.,
Cambridge
,
2014
).
16.
R. H.
Price
, “
General relativity primer
,”
Am. J. Phys.
50
(
4
),
300
329
(
1982
).
17.
R. H.
Price
, “
Spatial curvature, spacetime curvature, and gravity
,”
Am. J. Phys.
84
(
8
),
588
592
(
2016
).
18.
R. H.
Price
, “
Properties of spatial wormholes and other splittable spacetimes
,”
Phys. Rev. D
93
,
064060
(
2016
).
19.
C. A.
Middleton
and
M.
Langston
,
Am. J. Phys.
82
(
4
),
287
294
(
2014
).
20.
A. I.
Janis
,
Phys. Teach.
56
,
12
13
(
2018
).
21.
A.
Einstein
and
N.
Rosen
, “
The particle problem in the general theory of relativity
,”
Phys. Rev.
48
,
73
77
(
1935
).
22.
J. A.
Wheeler
,
Geometrodynamics
(
Academic Press
,
New York
,
1962
).
23.
K. S.
Thorne
,
Black Holes and Time Warps: Einstein's Outrageous Legacy
(
Norton
,
New York
,
1994
).
24.
M.
Visser
,
Lorentzian Wormholes: From Einstein to Hawking
(
Springer-Verlag
,
New York
,
1996
).
25.
D. J.
Raine
and
E.
Thomas
,
Black Holes: An Introduction
, 2nd ed. (
World Scientific
,
Singapore
,
2010
).
26.
M.
Lockwood
,
The Labyrinth of Time: Introducing the Universe
(
Oxford U. P
.,
New York
,
2005
).
27.
M. S.
Morris
and
K. S.
Thorne
, “
Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity
,”
Am. J. Phys.
56
(
5
),
395
412
(
1988
).
28.
NIST Digital Library of Mathematical Functions, edited by
F. W. J.
Olver
,
A. B.
Olde Daalhuis
,
D. W.
Lozier
,
B. I.
Schneider
,
R. F.
Boisvert
,
C. W.
Clark
,
B. R.
Miller
, and
B. V.
Saunders
, Release 1.0.18 of 2018–03–27, <https://dlmf.nist.gov/>.
29.
T.
Muller
, “
Visual appearance of a Morris-Thorne wormhole
,”
Am. J. Phys.
72
(
8
),
1045
1050
(
2004
).
30.
T.
Muller
, “
Exact geometric optics in a Morris-Thorne wormhole spacetime
,”
Phys. Rev. D
77
,
044043
(
2008
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.