We present an example from classical history that perfectly illustrates the concept of a self-organizing system, namely, the “Persian Immortals” described by Herodotus. Their name refers to the fact that their number was always kept constant (at 10 000) by instantly substituting every warrior who fell during a battle. One evident advantage of this was to undermine the morale of the enemy troops. Here, we focus on a second major benefit, namely, that the Immortals—thanks to the replacement tactics—were actually becoming a stronger unit in the course of the battle. Modeling the substitution of the fallen ones by a plausible set of replacement rules, and using Order Statistics to analyze the evolution of the unit's fitness, we show that the distribution of fighting skills will ripen to a robust and favorable equilibrium state.

1.
Herodotus
,
The Histories, Book VII (“Polyhymnia”)
, translated in English by G. C. Macaulay (
MacMillan & Co
.,
London/New York
,
1904
), Chap. 83 (written c. 440 BCE); the translation is freely available from the Project Gutenberg, see <http://www.gutenberg.org/ebooks/2456>.
2.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1112
(
1993
).
3.
K.
Wiesenfeld
, “
Resource Letter ScL-1: Scaling laws
,”
Am. J. Phys.
69
,
938
942
(
2001
).
4.
R.
Feistel
and
W.
Ebeling
,
Physics of Self-Organization and Evolution
(
Wiley-VCH Verlag
,
Weinheim, Germany
,
2011
).
5.
D. T.
Jacobs
, “
Resource Letter SOP-1: Self-organizing physics
,”
Am. J. Phys.
83
,
680
687
(
2015
).
6.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover Publ
.,
New York
,
1982
).
7.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
537
(
2009
).
8.
D. W.
Thompson
,
On Growth and Form
(
Cambridge U. P
.,
Cambridge, UK
,
1917
).
9.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. London, Ser. B
237
(
641
),
37
72
(
1952
).
10.
J. D.
Murray
,
Mathematical Biology
(
Springer
,
Berlin/Heidelberg
,
1989
).
11.
S.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Hyperion
,
New York
,
2003
).
12.
M.
Euler
, “
Hands-on synchronization: An adaptive clockwork Universe
,”
Phys. Teach.
44
,
173
176
(
2006
).
13.
V. L.
Provencal
,
Sophist Kings: Persians as Other in Herodotus
(
Bloomsbury Academic
,
London/New York
,
2015
).
14.
P.
Bak
and
K.
Sneppen
, “
Punctuated equilibrium and criticality in a simple model of evolution
,”
Phys. Rev. Lett.
71
,
4083
4086
(
1993
).
15.
J.
de Boer
,
B.
Derrida
,
H.
Flyvbjerg
,
A. D.
Jackson
, and
T.
Wettig
, “
Simple model of self-organized biological evolution
,”
Phys. Rev. Lett.
73
,
906
909
(
1994
).
16.
M.
Paczuski
,
S.
Maslov
, and
P.
Bak
, “
Avalanche dynamics in evolution, growth, and depinning models
,”
Phys. Rev. E
53
,
414
443
(
1996
).
17.
P.
Bak
,
How Nature Works: The Science of Self-Organized Criticality
(
Copernicus Books
,
New York
,
1996
).
18.
H. J.
Jensen
,
Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems
, Cambridge Lecture Notes in Physics Vol. 10 (
Cambridge U. P
.,
Cambridge, UK
,
1998
).
19.
J. J. P.
Veerman
and
F. J.
Prieto
, “
On rank driven dynamical systems
,”
J. Stat. Phys.
156
,
455
472
(
2014
);
see also the erratum in
J. J. P.
Veerman
and
F. J.
Prieto
,
J. Stat. Phys.
161
,
1324
1324
(
2015
).
20.
R.
de Langhe
, “
A comparison of two models of scientific progress
,”
Stud. Hist. Philos. Sci.
46
,
94
99
(
2014
).
21.
B. C.
Arnold
,
N.
Balakrishnan
, and
H. N.
Nagaraja
,
A First Course in Order Statistics
(
Wiley & Sons
/SIAM
,
Philadelphia
,
1992
/
2008
), see Eq. (2.2.11).
22.
G. H.
Weiss
,
K. E.
Shuler
, and
K.
Lindenberg
, “
Order statistics for first passage times in diffusion processes
,”
J. Stat. Phys.
31
,
255
278
(
1983
).
23.
H. A.
Kramers
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
,
284
304
(
1940
).
24.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North-Holland Elsevier
,
Amsterdam
,
2007
).
25.
G.
Gamow
, “
Zur Quantentheorie des Atomkernes (On the quantum theory of the atomic nucleus
),”
Z. Phys.
51
,
204
212
(
1928
).
26.
B. R.
Holstein
, “
Understanding alpha decay
,”
Am. J. Phys.
64
,
1061
1071
(
1996
).
27.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Pearson Prentice Hall
,
Upper Saddle River, NJ
,
2005
).
28.
H. J.
van Gerner
,
G. A.
Caballero-Robledo
,
D.
van der Meer
,
K.
van der Weele
, and
M. A.
van der Hoef
, “
Coarsening of Faraday heaps: Experiment, simulation, and theory
,”
Phys. Rev. Lett.
103
,
028001
(
2009
).
29.
H. J.
van Gerner
,
K.
van der Weele
,
D.
van der Meer
, and
M. A.
van der Hoef
, “
Scaling behavior of coarsening Faraday heaps
,”
Phys. Rev. E
92
,
042203
(
2015
).
30.
D.
Razis
,
A. N.
Edwards
,
J. M. N. T.
Gray
, and
K.
van der Weele
, “
Arrested coarsening of granular roll waves
,”
Phys. Fluids
26
,
123305
(
2014
).
31.

The exact plateau value fplat is found from the condition 01f(x)dx=1, which here takes the form xcr(m+1)/N+(1xcr)fplat=1. Thus fplat=[1xcr(m+1)/N]/(1xcr).

32.
Evolutionary Algorithms in Engineering Applications edited by
D.
Dasgupta
and
Z.
Michalewicz
(
Springer
,
Berlin
,
1997
).
33.
Applications of Multi-Objective Evolutionary Algorithms
, edited by
C. A.
Coello Coello
and
G. B.
Lamont
, Advances in Natural Computation Vol.
1
(
World Scientific
,
Singapore
,
2004
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.