Plane-polarized monochromatic light is rotated in an optically active medium. The extent of the rotation is wavelength dependent, following an optical rotatory dispersion (ORD) curve. Typically, this phenomenon is studied by using a few discrete wavelengths. Here, we demonstrate optical rotation of white light. Corn syrup is used as the medium as large angles of optical rotation can be generated in compact containers. The Drude expression for ORD and Malus' law are used to predict the spectrum of the light transmitted as a function of the angle between polarizers located on either side of the sample. Despite the transmission spectrum of corn syrup in the absence of polarizers being unremarkable, optical rotation leads to a dramatic change in color because a “notch” is generated in the spectrum of the transmitted light. The extinction region can be translated across the spectrum by rotating the analyzer. The experimentally measured location of the region of maximum extinction and the color of the transmitted light are in excellent qualitative agreement with the predicted values. The experiment is ideal both as a lecture demonstration and for quantitative investigation in an undergraduate laboratory of the spectral distribution of light transmitted by a chiral medium.

1.
T.
Levitt
,
The Shadow of the Enlightenment
(
Oxford U. P
.,
Oxford
,
2009
).
2.
O.
Darrigol
,
A History of Optics from Greek Antiquity to the Nineteenth Century
(
Oxford U. P
.,
Oxford
,
2012
).
3.
D. L.
Carr
,
N. L. R.
Spong
,
I. G.
Hughes
, and
C. S.
Adams
, “
Measuring the Faraday effect in olive oil using permanent magnets and Malus' law
,”
Eur. J. Phys.
41
,
025301
(
2020
).
4.
R. N.
Compton
and
M. A.
Duncan
,
Laser Experiments for Chemistry and Physics
(
Oxford U. P
.,
Oxford
,
2016
), Chap. 20.
5.
R. N.
Compton
,
S. M.
Mahurin
, and
R. N.
Zare
, “
Demonstration of optical rotatory dispersion of sucrose
,”
J. Chem. Educ.
76
,
1234
1236
(
1999
).
6.
L. H. C.
Patterson
,
K. E.
Kihlstrom
, and
M. A.
Everest
, “
Balanced polarimeter: A cost-effective approach for measuring the polarization of light
,”
Am. J. Phys.
83
,
91
94
(
2015
).
7.
C. S.
Adams
and
I. G.
Hughes
,
Optics f2f: From Fourier to Fresnel
(
Oxford U. P
.,
Oxford
,
2019
).
8.
G.
Freier
and
B. G.
Eaton
, “
Optical activity demonstration
,”
Am. J. Phys.
43
,
939
(
1975
).
9.
E.
Koubek
and
H.
Quinn
, “
Change in optical rotation with wavelength
,”
J. Chem. Educ.
66
,
853
(
1989
).
10.
R.
Becker
, “
Kaleidoscoptical activity
,”
J. Chem. Educ.
70
,
74
75
(
1993
).
11.
M. A.
Pecina
and
C. A.
Smith
, “
A classroom demonstration of rayleigh light scattering in optically active and inactive systems
,”
J. Chem. Educ.
76
,
1230
1233
(
1999
).
12.
M. E.
Knotts
and
J. M.
Rice
, “
Fun with polarizers
,”
Opt. Photonics News
10
,
64
65
(
1999
).
13.
M.
Nixon
and
I. G.
Hughes
, “
A visual understanding of optical rotation using corn syrup
,”
Eur. J. Phys.
38
,
045302
(
2017
).
14.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge U. P
.,
Cambridge
,
1982
).
15.
S. F.
Mason
,
Molecular Optical Activity and the Chiral Discriminations
(
Cambridge U. P
.,
Cambridge
,
1982
).
16.
N.
Hagen
and
T.
Tadokoro
, “
The rainbow beam experiment: Direct visualization of dipole scattering and optical rotatory dispersion
,”
Proc. SPIE
11132
,
111320E
(
2019
).
17.
“Colour open-source Python package providing a comprehensive number of algorithms and datasets for color science,” <https://colour.readthedocs.io> (last accessed 12/18/2019).
18.
See supplemental material at https://doi.org/10.1119/10.0000390 for an animation of the change in color as a function of the angle of the analyzer in 2 degree increments.
19.
I. G.
Hughes
and
T. P. A.
Hase
,
Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis
(
Oxford U. P
.,
Oxford
,
2010
).
20.
D. J.
Dick
and
T. M.
Shay
, “
Ultrahigh-noise rejection optical filter
,”
Opt. Lett.
16
,
867
869
(
1991
).
21.
J. A.
Zielińska
,
F. A.
Beduini
,
N.
Godbout
, and
M. W.
Mitchell
, “
Ultranarrow Faraday rotation filter at the Rb D1 line
,”
Opt. Lett.
37
,
524
526
(
2012
).
22.
W.
Kiefer
,
R.
Löw
,
J.
Wrachtrup
, and
I.
Gerhardt
, “
Na-Faraday rotation filtering: The optimal point
,”
Sci. Rep.
4
,
6552
(
2014
).
23.
M. A.
Zentile
,
D. J.
Whiting
,
J.
Keaveney
,
C. S.
Adams
, and
I. G.
Hughes
, “
Atomic Faraday filter with equivalent noise bandwidth less than 1 GHz
,”
Opt. Lett.
40
,
2000–2003
(
2015
).
24.
J.
Keaveney
,
S. A.
Wrathmall
,
C. S.
Adams
, and
I. G.
Hughes
, “
Optimized ultra-narrow atomic bandpass filters via magneto-optic rotation in an unconstrained geometry
,”
Opt. Lett.
43
,
4272
4275
(
2018
).
25.
L.
Weller
,
K. S.
Kleinbach
,
M. A.
Zentile
,
S.
Knappe
,
I. G.
Hughes
, and
C. S.
Adams
, “
Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime
,”
Opt. Lett.
37
,
3405
3407
(
2012
).
26.
V.
Vasyliev
,
E. G.
Villora
,
M.
Nakamura
,
Y.
Sugahara
, and
K.
Shimamura
, “
UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3
,”
Opt. Express
20
,
14460
14470
(
2012
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.