Most introductory books on quantum mechanics discuss the particle-in-a-box problem through solutions of the Schrödinger equation, at least, in the one-dimensional case. When introducing the virial theorem, however, its discussion in the context of this simple model is not considered and students ponder the question of the validity of the virial theorem for a system with, apparently, no forces. In this work, we address this issue by solving the particle in a finite box and show that the virial theorem is fulfilled when the appropriate Cauchy boundary conditions are taken into account. We also illustrate how, in the limit of the infinite potential box, the virial theorem holds as well. As a consequence, it is possible to determine the averaged force exerted by the walls on the particle. Finally, a discussion of these results in the classical limit is provided.

1.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Cambridge U. P
.,
Cambridge
,
2017
).
2.
R.
Clausius
, “
XVI. On a mechanical theorem applicable to heat
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
40
,
122
127
(
1870
).
3.
V.
Fock
, “
Bemerkung zum Virialsatz
,”
Z. Phys.
63
,
855
858
(
1930
).
4.
M. A.
Maize
,
M. A.
Antonacci
, and
F.
Marsiglio
, “
The static electric polarizability of a particle bound by a finite potential well
,”
Am. J. Phys.
79
,
222
225
(
2011
).
5.
B. J.
Riel
, “
An introduction to self-assembled quantum dots
,”
Am. J. Phys.
76
,
750
757
(
2008
).
6.
R. J.
Olsen
and
G.
Vignale
, “
The quantum mechanics of electric conduction in crystals
,”
Am. J. Phys.
78
,
954
960
(
2010
).
7.
D. M.
Mitnik
,
J.
Randazzo
, and
G.
Gasaneo
, “
Endohedrally confined helium: Study of mirror collapses
,”
Phys. Rev. A
78
,
062501
(
2008
).
8.
G.
Allen
, “
Band structures of one-dimensional crystals with square-well potentials
,”
Phys. Rev.
91
,
531
533
(
1953
).
9.
C. I.
Mendoza
,
G. J.
Vazquez
,
M.
del Castillo-Mussot
, and
H.
Spector
, “
Stark effect dependence on hydrogenic impurity position in a cubic quantum box
,”
Phys. Rev. B
71
,
075330
(
2005
).
10.
M.
Belloni
and
R. W.
Robinett
, “
Quantum mechanical sum rules for two model systems
,”
Am. J. Phys.
76
,
798
806
(
2008
).
11.
V. G.
Gueorguiev
,
A. R. P.
Rau
, and
J. P.
Draayer
, “
Confined one-dimensional harmonic oscillator as a two-mode system
,”
Am. J. Phys.
74
,
394
403
(
2006
).
12.
J.
Milton Pereira
,
V.
Mlinar
,
F. M.
Peeters
, and
P.
Vasilopoulos
, “
Confined states and direction-dependent transmission in graphene quantum wells
,”
Phys. Rev. B
74
,
045424
(
2006
).
13.
S.
Bandopadhyay
,
B.
Dutta-Roy
, and
H. S.
Mani
, “
Understanding the Fano resonance through toy models
,”
Am. J. Phys.
72
,
1501
1507
(
2004
).
14.
P. L.
Garrido
,
S.
Goldstein
,
J.
Lukkarinen
, and
R.
Tumulka
, “
Paradoxical reflection in quantum mechanics
,”
Am. J. Phys.
79
,
1218
1231
(
2011
).
15.
J.
Gea-Banacloche
, “
Splitting the wave function of a particle in a box
,”
Am. J. Phys.
70
,
307
312
(
2002
).
16.
S. A.
Fulling
and
K. S.
Güntürk
, “
Exploring the propagator of a particle in a box
,”
Am. J. Phys.
71
,
55
63
(
2003
).
17.
C.
Duffin
and
A. G.
Dijkstra
, “
Controlling a quantum system via its boundary conditions
,”
Eur. Phys. J. D
73
,
221
226
(
2019
).
18.
R. M.
Dimeo
, “
Wave packet scattering from time-varying potential barriers in one dimension
,”
Am. J. Phys.
82
,
142
152
(
2014
).
19.
M.
Belloni
and
R. W.
Robinett
, “
The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics
,”
Phys. Rep.
540
,
25
122
(
2014
).
20.
J. O.
Hirschfelder
and
J. F.
Kincaid
, “
Application of the virial theorem to approximate molecular and metallic eigenfunctions
,”
Phys. Rev.
52
,
658
661
(
1937
).
21.
J.
Killingbeck
, “
Methods of proof and applications of the virial theorem in classical and quantum mechanics
,”
Am. J. Phys.
38
,
590–596
(
1970
).
22.
Z.
Dongpei
, “
Proof of the quantum virial theorem
,”
Am. J. Phys.
54
,
267–270
(
1986
).
23.
R. M.
Schectman
and
R. H.
Good
, Jr.
, “
Generalizations of the virial theorem
,”
Am. J. Phys.
25
,
219–225
(
1957
).
24.
A. G.
McLellan
, “
Virial theorem generalized
,”
Am. J. Phys.
42
,
239
243
(
1974
).
25.
E.
Weislinger
and
G.
Olivier
, “
The classical and quantum mechanical virial theorem
,”
Int. J. Quantum Chem. Symp.
8
,
389
401
(
1974
).
26.
E.
Weislinger
and
G.
Olivier
, “
The virial theorem with boundary conditions applications to the harmonic oscillator and to sine-shaped potentials
,”
Int. J. Quantum Chem.
9
,
425
433
(
1975
).
27.
E.
Weislinger
and
G.
Olivier
, “
Applications of a quantum virial theorem to Kronig and Penney's model and to a diatomic molecule in static approximation
,”
Int. J. Quantum Chem.
10
,
225
231
(
1976
).
28.
H.
Kalf
, “
The virial theorem in relativistic quantum mechanics
,”
J. Funct. Anal.
21
,
389
396
(
1976
).
29.
H.
Kalf
, “
The quantum mechanical virial theorem and the absence of positive energy bound states of Schrödinger operators
,”
Israel J. Math.
20
,
57
69
(
1975
).
30.
M.
Guilhem
and
W. C.
McMillan
, “
The virial theorem
,” in
Advances in Chemical Physics
, edited by
I.
Prigigine
and
S.
Rice
(
John Wiley and Sons
,
New York
,
1985
), Vol.
LVIII
.
31.
R. F. W.
Bader
, “
A quantum theory of molecular structure and its applications
,”
Chem. Rev.
91
,
893
928
(
1991
).
32.
Y.
İpekoğlu
and
S.
Turgut
, “
An elementary derivation of the quantum virial theorem from Hellmann–Feynman theorem
,”
Eur. J. Phys.
37
,
045405
(
2016
).
33.
J. R.
Walton
,
L. A.
Rivera-Rivera
,
R. R.
Lucchese
, and
J. W.
Bevan
, “
Canonical approaches to applications of the virial theorem
,”
J. Phys. Chem. A
120
,
817
823
(
2016
).
34.
J.
Sivardiere
, “
Using the virial theorem
,”
Am. J. Phys.
54
,
1100
1103
(
1986
).
35.
P. D.
Robinson
and
J. O.
Hirschfelder
, “
Virial theorem and its generalizations in scattering theory
,”
Phys. Rev.
129
,
1391
1396
(
1963
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.