The illuminating role of differential forms in electromagnetism (EM) is seldom discussed in the classroom. It is the aim of this article to bring forth some of the relevant insights that can be learnt from a differential forms approach to EM. The article is self-contained in that no previous knowledge of forms is needed to follow it. The effective polarization of the classical vacuum due to a uniform gravitational field and of the quantum vacuum in the Casimir effect are used to illustrate the power and easiness of interpretation of differential forms in dealing with electromagnetism in nontrivial situations. We hope that this article motivates physics teachers to bring the subject of differential forms to the classroom.

1.
F. J.
Dyson
,
Why is Maxwell's Theory so Hard to Understand?
, James Clerk Maxwell Commemorative Booklet (
James Clerk Maxwell Foundation
,
Edinburgh
,
1999
).
2.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge U. P.
,
Cambridge
,
1999
).
3.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
New York
,
1999
).
4.
J.
Gratus
,
P.
Kinsler
, and
M. W.
McCall
, “
Maxwell's (D, H) excitation fields: Lessons from permanent magnets
,”
Eur. J. Phys.
40
,
025203
(
2019
).
5.
D. J.
Griffith
,
Introduction to Electrodynamics
(
Cambridge U. P.
,
Cambridge
,
2017
).
6.
A.
Zangwill
,
Modern Electrodynamics
(
Cambridge U. P.
,
Cambridge
,
2013
).
7.
J.
Van Kranendonk
and
J. E.
Sipe
, “
Foundations of the macroscopic electromagnetic theory of dielectric media
,”
Prog. Opt.
15
,
245
350
(
1977
).
8.
A. J.
Ward
and
J. B.
Pendry
, “
Refraction and geometry in Maxwell's equations
,”
J. Mod. Opt.
43
,
773
793
(
1996
).
9.
M.
Kitano
, “
Reformulation of electromagnetism with differential forms
,”
Trends in Electromagnetism from Fundamentals to Applications
, edited by
V.
Barsan
and
R. P.
Lungu
(
IntechOpen
,
London
,
2012
).
10.
G. A.
Deschamps
, “
Electromagnetics and differential forms
,”
Proc. IEEE
69
,
676
696
(
1981
).
11.
N.
Schleifer
, “
Differential forms as a basis for vector analysiswith applications to electrodynamics
,”
Am. J. Phys.
51
,
1139
1145
(
1983
).
12.
Y.
Hoshino
, “
An elementary application of exterior differential forms in quantum mechanics
,”
Am. J. Phys.
46
,
1148
1150
(
1978
).
13.
H.
Amar
, “
Elementary application of differential forms to electromagnetism
,”
Am. J. Phys.
48
,
252
253
(
1980
).
14.
D.
Baldomir
, “
Differential forms and electromagnetism in 3-dimensional Euclidean space R3
,”
IEE Proc. A-Phys. Sci., Meas. Instrum. Manage. Educ. Rev.
133
,
139
143
(
1986
).
15.
A.
Bossavit
, “
Differential forms and the computation of fields and forces in electromagnetism
,”
Eur. J. Mech. B
10
,
474
488
(
1991
).
16.
F. L.
Teixeira
and
W. C.
Chew
, “
Differential forms, metrics, and the reflectionless absorption of electromagnetic waves
,”
J. Electromagn. Waves Appl.
13
,
665
686
(
1999
).
17.
K. F.
Warnick
and
P. H.
Russer
, “
Differential forms and electromagnetic field theory
,”
Prog. Electromagnet. Res.
148
,
83
112
(
2014
).
18.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
California
,
1973
).
19.
W.
Thirring
,
A Course in Mathematical Physics 2: Classical Field Theory
(
Springer-Verlag
,
New York
,
1978
).
20.
W. L.
Burke
,
Applied Differential Geometry
(
Cambridge U. P.
,
Cambridge
,
1985
).
21.
J.
Baez
and
J. P.
Muniain
,
Gauge Fields, Knots and Gravity
(
World Scientific Publishing Company
,
Singapore
,
1994
).
22.
H.
Flanders
,
Differential Forms with Applications to the Physical Sciences
(
Dover Publication Inc
.,
New York
,
1989
).
23.
I. V.
Lindell
,
Differential Forms in Electromagnetics
(
John Wiley & Sons
,
New Jersey
,
2004
).
24.
T.
Frankel
,
The Geometry of Physics: An Introduction
(
Cambridge U. P.
,
Cambridge
,
2011
).
25.
B.
Felsager
,
Geometry, Particles and Fields
(
Springer
,
New York
,
1998
).
26.
D.
Bachman
,
A Geometric Approach to Differential Forms
(
Birkhäuser
,
Boston
,
2012
).
27.
T.
Dray
,
Differential Forms and the Geometry of General Relativity
(
CRC Press
,
Boca Raton
,
2014
).
28.
A.
Zee
,
Quantum Field Theory in a Nutshell
(
Princeton U. P.
,
Princeton
,
2003
).
29.
M.
Göckeler
and
T.
Schücker
,
Differential Geometry, Gauge Theories, and Gravity
(
Cambridge U. P.
,
Cambridge
,
1987
).
30.
B.
Schutz
,
Geometrical Methods of Mathematical Physics
(
Cambridge U. P.
,
Cambridge
,
1980
).
31.
M. D.
Spivak
,
A Comprehensive Introduction to Differential Geometry
(
Publish or Perish Inc
.,
Houston
,
1970
).
32.
A.
Robinson
, “
Non-standard analysis
,”
Princeton Landmarks in Mathematics and Physics
(
Princeton U. P.
,
Princeton
,
1996
).
33.
F. W.
Hehl
and
Y. N.
Obukhov
,
Foundations of Classical Electrodynamics: Charge, ux, and Metric
(
Birhäauser
,
Boston
,
2003
).
34.
W. L.
Burke
, “
Div, grad, curl are dead
,” (
1995
). Retrieved from https://people.ucsc.edu/~rmont/papers/Burke_DivGradCurl.pdf
35.
Y.
Choquet-Bruhat
,
C.
DeWitt-Morette
, and
M.
Dillard-Bleick
,
Analysis, Manifolds and Physics
(
North Holland
,
Amsterdam
,
1982
).
36.
R.
Heras
, “
The Helmholtz theorem and retarded fields
,”
Eur. J. Phys.
37
,
065204
(
2016
).
37.
S.
Carroll
,
Spacetime and Geometry: An Introduction to General Relativity
(
Pearson
,
Harlow
,
2003
).
38.
R. H.
Price
, “
General relativity primer
,”
Am. J. Phys.
50
,
300
329
(
1982
).
39.
M.
Gasperini
,
Theory of Gravitational Interactions
(
Springer
,
Milan
,
2013
).
40.
M.
Fecko
,
Differential Geometry and Lie Groups for Physicists
(
Cambridge U. P.
,
Cambridge
,
2006
).
41.
D. H.
Kobe
, “
Helmholtzs theorem revisited
,”
Am. J. Phys.
54
,
552
554
(
1986
).
42.
F. W.
Hehl
and
Y. N.
Obukhov
, “
A gentle introduction to the foundations of classical electrodynamics: The meaning of the excitations (D, H) and the field strengths (E, B)
,” preprint arXiv physics/0005084 (
2000
).
43.
E. J.
Post
, “
Sagnac effect
,”
Rev. Mod. Phys.
39
,
475
493
(
1967
).
44.
V.
Guillemin
and
S.
Sternberg
,
Symplectic Techniques in Physics
(
Cambridge U.P.
,
Cambridge
,
1990
).
45.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Clarendon Press
,
Oxford
,
1881
).
46.
H.
Weber
,
Die Partiellen Differential-Gleichungen Der Mathematischen Physik Nach Rie- Mann's Vorlesungen Bearb
(
F. Vieweg & Sohn
,
1919
).
47.
I.
Bialynicki-Birula
and
Z.
Bialynicka-Birula
, “
The role of the Riemann–Silberstein vector in classical and quantum theories of electromagnetism
,”
J. Phys. A: Math. Theor.
46
,
053001
(
2013
).
48.
S.
Liberati
,
S.
Sonego
, and
M.
Visser
, “
Scharnhorst effect at oblique incidence
,”
Phys. Rev. D
63
,
085003
(
2001
).
49.
K. F.
Warnick
,
R. H.
Selfridge
, and
D. V.
Arnold
, “
Teaching electromagnetic field theory using differential forms
,”
IEEE Trans. Educ.
40
,
53
68
(
1997
).
50.
H. J.
Eysenck
,
Genius: The Natural History of Creativity
(
Cambridge U. P.
,
Cambridge
,
1995
).
51.
E. S.
Whittaker
, “
On electric phenomena in gravitational fields
,”
Proc. R. Soc. London. Ser. A
116
,
720
735
(
1927
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.