With developments in modern instrumentation such as microelectromechanical gyro/accelerometers, high speed video analysis, and precision shaft encoders, there is an increased interest in the study of the large angle oscillations of pendulums as an example of nonlinear dynamics. The solution to the equation of motion for the non-linear pendulum cannot be expressed in terms of elementary functions and is therefore generally approximated by a Fourier series. The present paper extends this to include Fourier coefficients up to A13, as required for amplitudes . The calculated coefficients are compared with experimental data for a damped and minimally damped pendulum for amplitudes .
REFERENCES
1.
Stillman
Drake
, “
Galileo's physical measurements
,” Am. J. Phys.
54
(4
), 302
–306
(1986
).2.
Gregory L.
Baker
and
James A.
Blackburn
, The Pendulum a Case Study in Physics
(
Oxford U. P
.,
Oxford
, 2005
).3.
Robert James
Matthys
, Accurate Clock Pendulums
(
Oxford U. P
.,
Oxford
, 2004
).4.
Matthew
Bennett
,
Maichael F.
Schatz
,
Heidi
Rockwood
, and
Kurt
Weisenfeld
, “
Huygens' Clocks
,” Proc. Roy. Soc. London A
458
, 563
–579
(2002
).5.
Daniel
Bernoulli
, “
Comparison between flexible and rigid pendulum strings
,” Norvi Commentarii Academae Scientiarum Imperialis Petropolitanae Acad. Sci. Imp. Petropolitanae
6
, 108
–122
(1732/1733
).6.
Kim
Johannessen
, “
An approximate solution to the equation of motion for large-angle oscillations of the simple pendulum with initial velocity
,” Eur. J. Phys.
31
, 511
–518
(2010
).7.
L. P.
Fulcher
and
B. F.
Davis
, “
Theoretical and experimental study of the motion of the simple pendulum
,” Am. J. Phys.
44
(1
), 51
–55
(1976
).8.
R.
Simon
and
R. P.
Riesz
, “
Large amplitude simple pendulum: A Fourier analysis
,” Am. J. Phys.
47
(10
), 898
–899
(1979
).9.
Donald E.
Hall
, “
Comments on Fourier analysis of the simple pendulum
,” Am. J. Phys.
49
(8
), 792
(1981
).10.
S. C.
Zilio
, “
Measurement and analysis of large-angle pendulum motion
,” Am. J. Phys.
50
(5
), 450
–452
(1982
).11.
A.
Belendez
,
E.
Arribas
,
M.
Ortuna
,
S.
Gallego
,
A.
Marquez
, and
I.
Pascual
, “
Approximate solutions for the nonlinear pendulum equation using a rational harmonic representation
,” Comput. Math. Appl.
64
(6
), 1602
–1611
(2012
).12.
Riccardo
Borghi
, “
Simple pendulum dynamics: Revisiting the Fourier-based approach to the solution
,” arXiv:1303.5023v1.13.
Salvador
Gil
,
Andres E.
Legarreta
, and
Daniel E.
Di Gregorio
, “
Measuring anharmonicity in a large amplitude pendulum
,” Am. J. Phys.
76
(9
), 843
–847
(2008
).14.
15.
João C.
Fernandes
,
Pedro J.
Sebastião
,
Luís N.
Gonçalves
, and
António
Ferraz
, “
Study of large-angle anharmonic oscillations of a physical pendulum using an acceleration sensor
,” Eur. J. Phys.
38
(4
), 045004
(2017
).16.
J.
Alho
,
H.
Silva
,
V.
Teodoro
, and
G.
Bonfait
, “
A simple pendulum studied with a low-cost wireless acquisition board
,” Phys. Educ.
54
, 015015
(2019
).17.
Henrik B.
Pedersen
,
John E. V.
Andersen
,
Torsten G.
Nielsen
,
Jens Jacob
Iversen
,
Folmer
Lyckegaard
, and
Frank K.
Mikkelsen
, “
An experimental system for studying the plane pendulum in physics laboratory teaching
,” Eur. J. Phys.
41
, 015701
(2020
).18.
L. N.
Goncalves
,
J.
Fernandes
,
A.
Ferraz
,
A. G.
Silva
, and
P. J.
Sebastiao
, “
Physical pendulum model: Fractional differential equation and memory effects
,” preprint arXiv:2006.15665v1 [physics.class-ph] (2020
).19.
F. M. S.
Lima
, “
Simple but accurate periodic solutions for the nonlinear pendulum equation
,” Rev. Bras. Ensino Fís.
41
(1
), e20180202
(2019
).20.
Karlheinz
Ochs
, “
A comprehensive analytical solution of the nonlinear pendulum
,” Eur. J. Phys.
32
(2
), 479
–490
(2011
).21.
M. I.
Qureshi
,
M.
Rafat
, and
S.
Ismail Azad
, “
The exact equation of motion of a simple pendulum of arbitrary amplitude: A hypergeometric approach
,” Eur. J. Phys.
31
(6
), 1485
–1497
(2010
).22.
Stephen T.
Thornton
and
Jerry B.
Marion
, Classical Dynamics of Particles and Systems
(
Thompson Brooks Cole
,
Belmont, CA
, 2004
).23.
Claudio G.
Carvalhaes
and
Patrick
Suppes
, “
Approximations for the period of the simple pendulum based on the arithmetic-geometric mean
,” Am. J. Phys.
76
(12
), 1150
–1154
(2008
).24.
F. M. S.
Lima
and
P.
Arun
, “
An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime
,” Am. J. Phys.
74
(10
), 892
–895
(2006
).25.
F. M. S.
Lima
, “
Simple ‘log formulae’ for pendulum motion valid for any amplitude
,” Eur. J. Phys.
29
, 1091
–1098
(2008
).26.
Jan
Benacka
, “
A better cosine approximate solution to pendulum equation
,” Int. J. Math. Educ. Sci. Technol.
40
(2
), 307
–308
(2009
).27.
Kim
Johannessen
, “
An anharmonic solution to the equation of motion for the simple pendulum
,” Eur. J. Phys.
32
, 407
–417
(2011
).28.
SPSSScience
, “
TableCurve 2D
,” <http://www.sigmaplot.com/products/tablecurve2d/tablecurve2d.php> (2000
).29.
30.
Gregory L.
Baker
, “
Probability, pendulums, and pedagogy
,” Am. J. Phys.
74
(6
), 482
–489
(2006
).© 2020 American Association of Physics Teachers.
2020
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.