The purpose of this work is to study the phenomenon of tidal locking in a pedagogical framework by analyzing the effective gravitational potential of a two-body system with two spinning objects. It is shown that the effective potential of such a system is an example of a fold catastrophe. In fact, the existence of a local minimum and saddle point, corresponding to tidally locked circular orbits, is regulated by a single dimensionless control parameter that depends on the properties of the two bodies and on the total angular momentum of the system. The method described in this work results in compact expressions for the radius of the circular orbit and the tidally locked spin/orbital frequency. The limiting case in which one of the two orbiting objects is point-like is studied in detail. An analysis of the effective potential, which in this limit depends on only two parameters, allows one to clearly visualize the properties of the system. The notorious case of the Mars' moon Phobos is presented as an example of a satellite that is past the no return point and, therefore, will not reach a stable or unstable tidally locked orbit.

1.
Encyclopedia of Astronomy and Astrophysics
, edited by
Paul
Murdin
(
Institute of Physics Publishing
,
Bristol
,
2001
), p.
3998
.
2.
Johannes
Kepler
,
Astronomia Nova
(
1609
).
3.
Sir Isaac
Newton
,
Philosophiæ Naturalis Principia Mathematica
(
1687
).
4.
John R.
Taylor
,
Classical Mechanics
(
University Science Books
,
Mill Valley
,
2005
).
5.
A. B.
Arons
, “
Basic physics of the semidiurnal lunar tide
,”
Am. J. Phys.
47
,
934
937
(
1979
).
6.
O.
Grøn
, “
A tidal force pendulum
,”
Am. J. Phys.
51
,
429
431
(
1983
).
7.
Gary
White
,
Tony
Mondragon
,
David
Slaughter
, and
Dorothy
Coates
, “
Modelling tidal effects
,”
Am. J. Phys.
61
,
367
371
(
1993
).
8.
Mitchell M.
Withers
, “
Why do tides exist?
,”
Phys. Teach.
31
,
394
398
(
1993
).
9.
M. A.
Koenders
, “
The effects of tidal forces on an elastic satellite in a closed orbit
,”
Eur. J. Phys.
19
,
265
270
(
1998
).
10.
Eugene I.
Butikov
, “
A dynamical picture of the oceanic tides
,”
Am. J. Phys.
70
,
1001
1011
(
2002
).
11.
H.
Razmi
, “
On the tidal force of the Moon on the Earth
,”
Eur. J. Phys.
26
,
927
934
(
2005
).
12.
Marco
Masi
, “
On compressive radial tidal forces
,”
Am. J. Phys.
75
,
116
124
(
2007
).
13.
Herbert M.
Urbassek
, “
Precession of the Earth-Moon system
,”
Eur. J. Phys.
30
,
1427
1433
(
2009
).
14.
Olivier
Pujol
,
Christophe
Lagoute
, and
José-Philippe
Pérez
, “
Weight, gravitation, inertia, and tides
,”
Eur. J. Phys.
36
,
065012
(
2015
).
15.
Chiu-king
Ng
, “
How tidal forces cause ocean tides in the equilibrium theory
,”
Phys. Educ.
50
,
159
164
(
2015
).
16.
P. J.
Cregg
, “
Just how much do the planets affect the tides?
,”
Phys. Educ.
52
,
053003
(
2017
).
17.
Travis
Norsen
,
Mackenzie
Dreese
, and
Christopher
West
, “
The gravitational self-interaction of the Earth's tidal bulge
,”
Am. J. Phys.
85
,
663
669
(
2017
).
18.
C. P.
Sonett
,
E. P.
Kvale
,
A.
Zakharian
,
Marjorie A.
Chan
, and
T. M.
Demko
, “
Late Proterozoic and Paleozoic tides, retreat of the Moon, and rotation of the Earth
,”
Science
273
,
100
104
(
1996
).
19.
J. O.
Dickey
 et al, “
Lunar laser ranging: A continuing legacy of the Apollo program
,”
Science
265
,
482
490
(
1994
).
20.
Ian
Garrick-Bethell
,
Viranga
Perera
,
Francis
Nimmo
, and
Maria T.
Zuber
, “
The tidal-rotational shape of the Moon and evidence for polar wander
,”
Nature
512
,
181
184
(
2014
).
21.
Chuan
Qin
,
Shijie
Zhong
, and
Roger
Phillips
, “
Formation of the lunar fossil bulges and its implication for the early Earth and Moon
,”
Geophys. Res. Lett.
45
,
1286
1296
, (
2018
).
22.
Immanuel
Kant
,
Whether the Earth has Undergone an Alteration of its Axial Rotation
(
Wöchentliche Frag- und Anzeigungs-Nachricten
,
Königsberg
,
1754
).
23.
Valeri V.
Makarov
,
Ciprian
Berghea
, and
Michael
Efroimsky
, “
Dynamical evolution and spin-orbit resonances of potentially habitable exoplanets: The case of GJ 581d
,”
Astrophys. J.
761
,
1
14
(
2012
).
24.
J. P.
Zahn
, “
The dynamical tide in close binaries
,”
Astron. Astrophys.
41
,
329
344
(
1975
).
25.
J. P.
Zahn
, “
Tidal friction in close binary stars
,”
Astron. Astrophys.
57
,
383
394
(
1977
).
26.
J. P.
Zahn
, “
Tidal dissipation in binary systems
,”
EAS Publ. Ser.
29
,
67
90
(
2008
).
27.
P.
Auclair-Desrotour
,
J.
Laskar
,
S.
Mathis
, and
A. C. M.
Correia
, “
The rotation of planets hosting atmospheric tides: From Venus to habitable super-Earths
,”
Astron. Astrophys.
603
,
A108
(
2017
).
28.
L. M.
Celnikier
, “
Volcanoes on Io
,”
Eur. J. Phys.
4
,
10
15
(
1983
).
29.
Robert H.
Tyler
,
Wade G.
Henning
, and
Christopher W.
Hamilton
, “
Tidal heating in a magma ocean within Jupiter's Moon Io
,”
Astrophys. J. Suppl. Ser.
218
,
1
17
(
2015
).
30.
Alar
Toomre
and
Juri
Toomre
, “
Galactic bridges and tails
,”
Astrophys. J.
178
,
623
666
(
1972
).
31.
Marc
Fouchard
 et al, “
Long-term effects of the Galactic tide on cometary dynamics
,”
Celestial Mech. Dyn. Astron.
95
,
299
326
(
2006
).
32.
C. C.
Counselman
, “
Outcomes of tidal evolution
,”
Astrophys. J.
180
,
307
314
(
1973
).
33.
Z.
Kopal
, “
Tidal evolution in close binary systems
,”
Astrophys. Space Sci.
17
,
161
185
(
1972
).
34.
W.
van Hamme
, “
On synchronism between axial rotation and orbital motion in close binary systems
,”
Astrophys. Space Sci.
64
,
239
248
(
1979
).
35.
P.
Hut
, “
Stability of tidal equilibrium
,”
Astron. Astrophys.
92
,
167
170
(
1980
).
36.
See the first paragraph of Section 2 for details about conservation of angular momentum http://kirkmcd.princeton.edu/examples/spin_orbit.pdf.
37.
J.
Güémez
,
C.
Fiolhais
, and
M.
Fiolhais
, “
The Cartesian diver and the fold catastrophe
,”
Am. J. Phys.
70
,
710
714
(
2002
).
38.
Manuel
Fiolhais
and
Rogério
Nogueira
, “
Sistema mecánico con un potencial catastrófico
,”
Rev. Esp. Fís.
34
(
1
),
30
33
(
2020
).
39.
Bruce G.
Bills
,
Gregory A.
Neumann
,
David E.
Smith
, and
Maria T.
Zuber
, “
Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos
,”
J. Geophys. Res.
110
,
E07004
, (
2005
).
40.
M.
Efroimsky
and
V.
Lainey
, “
Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution
,”
J. Geophys. Res.
112
(
E12
),
E12003
, (
2007
).
41.
P.
Hut
, “
Tidal evolution in close binary systems
,”
Astron. Astrophys.
99
,
126
140
(
1981
).
42.
Wolfram Research, Inc.
,
Mathematica, Version 11.3
(
Wolfram Research, Inc
.,
Champaign, IL
,
2018
).
43.
G. H.
Darwin
, “
On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides upon a yielding nucleus
,”
Philos. Trans. R. Soc.
170
,
1
35
(
1879
).
44.
E. C.
Zeeman
, “
Catastrophe theory
,”
Sci. Am.
234
,
65
83
(
1976
).
45.
R.
Gilmore
,
Catastrophe Theory for Scientist and Engineers
(
Wiley
,
New York
,
1981
).
46.
P. T.
Saunders
,
An Introduction to Catastrophe Theory
(
Cambridge U. P
.,
New York
,
1980
).
47.
T.
Poston
and
I.
Stewart
,
Catastrophe Theory and Its Applications
(
Pitman
,
London
,
1978
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.