We describe a simple classroom demonstration of a fluid-dynamic instability. The demonstration requires only a bucket of water, a piece of string, and some used tealeaves or coffee grounds. We argue that the mechanism for the instability, at least in its later stages, is two-dimensional barotropic (shear-flow) instability and we present evidence in support of this. We show results of an equivalent basic two-dimensional numerical non-linear model, which simulates behavior comparable to that observed in the bucket demonstration. Modified simulations show that the instability does not depend on the curvature of the domain, but rather on the velocity profile.
REFERENCES
1.
O. M.
Phillips
, “
Shear-flow turbulence
,” Annu. Rev. Fluid Mech.
1
(1
), 245
–264
(1969
).2.
J. P.
Kossin
and
W. H.
Schubert
, “
Mesovortices in hurricane Isabel
,” Bull. Amer. Meteor. Soc.
85
, 151
–153
(2004
).3.
A.
Adriani
,
A.
Mura
,
G.
Orton
,
C.
Hansen
,
F.
Altieri
,
M. L.
Moriconi
,
J.
Rogers
,
G.
Eichstädt
,
T.
Momary
,
A. P.
Ingersoll
,
G.
Filacchione
,
G.
Sindoni
,
F.
Tabataba-Vakili
,
B. M.
Dinelli
,
F.
Fabiano
,
S. J.
Bolton
,
J. E. P.
Connerney
,
S. K.
Atreya
,
J. I.
Lunine
,
F.
Tosi
,
A.
Migliorini
,
D.
Grassi
,
G.
Piccioni
,
R.
Noschese
,
A.
Cicchetti
,
C.
Plainaki
,
A.
Olivieri
,
M. E.
O'Neill
,
D.
Turrini
,
S.
Stefani
,
R.
Sordini
, and
M.
Amoroso
, “
Cluster of cyclones encircling Jupiter's poles
,” Nature
555
, 216
–219
(2018
).4.
L.
Illari
,
J.
Marshall
,
P.
Bannon
,
J.
Botella
,
R.
Clark
,
T.
Haine
,
A.
Kumar
,
S.
Lee
,
K. J.
Mackin
,
G. A.
McKinley
,
M.
Morgan
,
R.
Najjar
,
T.
Sikora
, and
A.
Tandon
, “
Weather in a Tank: Exploiting laboratory experiments in the teaching of meteorology, oceanography, and climate
,” Bull. Amer. Meteor. Soc.
90
, 1619
–1632
(2009
).5.
J.
Marshall
and
R. A.
Plumb
, Atmosphere, Ocean and Climate Dynamics: An Introductory Text, 1st ed.
(
Elsevier Academic Press
,
Cambridge
, 2007
).6.
K. J.
Mackin
,
N.
Cook-Smith
,
L.
Illari
,
J.
Marshall
, and
P.
Sadler
, “
The effectiveness of rotating tank experiments in teaching undergraduate courses in atmospheres, oceans, and climate sciences
,” J. Geosci. Educ.
60
(1
), 67
–82
(2012
).7.
S.
Shakerin
, “
Fluids demonstrations: Trailing vortices, plateau border, angle of repose, and flow instability
,” Phys. Teach.
56
(4
), 248
–252
(2018
).8.
MIT
, “
General Circulation: Tank - Eddies
,” <http://weathertank.mit.edu/links/projects/general-circulation-an-introduction/general-circulation-tank-eddies>, accessed on 2019.9.
D.
Fultz
,
R. R.
Long
,
G. V.
Owens
,
W.
Bohan
,
R.
Kaylor
, and
J.
Weil
, “
Studies of thermal convection in a rotating cylinder with some applications for large-scale atmospheric motions
,” Meteorology Monographs (1959
), pp. 1
–104
.10.
A. C.
Barbosa Aguiar
,
P. L.
Read
,
R. D.
Wordsworth
,
T.
Salter
, and
Y. H.
Yamazaki
, “
A laboratory model of Saturn's north polar hexagon
,” Icarus
206
, 755
–763
(2010
).11.
J.
Van de Konijnenberg
,
A.
Nielsen
,
J.
Rasmussen
, and
B.
Stenum
, “
Shear flow instability in a rotating fluid
,” J. Fluid Mech.
387
, 177
–204
(1999
).12.
M.
Nezlin
and
E.
Snezhkin
, Rossby Vortices, Spiral Structures, Solitons. Astrophysics and Plasma Physics in Shallow Water Experiments
(
Springer
,
Berlin
, 1993
).13.
O.
Reynolds
, “
An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels
,” Proc. R. Soc.
174
, 935
–982
(1883
).14.
Grae
Worster
, “
Kelvin Helmholtz
,” <https://www.youtube.com/watch?v=UbAfvcaYr00>, accessed on 2019.15.
D. H.
Kelley
and
N. T.
Ouellette
, “
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
,” Am. J. Phys.
79
(3
), 267
–273
(2011
).16.
P.
Vorobieff
and
R. E.
Ecke
, “
Fluid instabilities and wakes in a soap-film tunnel
,” Am. J. Phys.
67
(5
), 394
–399
(1999
).17.
National Committee for Fluid Mechanics Films
, “
Vorticity
,” <http://web.mit.edu/hml/ncfmf.html>, accessed on 2019.18.
G. K.
Batchelor
, An Introduction to Fluid Dynamics
(
Cambridge U. P
.,
Cambridge
, 1967
).19.
A.
Tandon
and
J.
Marshall
, “
Einstein's tea leaves and pressure systems in the atmosphere
,” Phys. Teach.
48
(5
), 292
–295
(2010
).20.
National Committee for Fluid Mechanics Films, “
Secondary Flow
,”
<http://web.mit.edu/hml/ncfmf.html>, accessed on 2019.21.
I. N.
James
, Introduction to Circulating Atmospheres
, 1st ed. (
Cambridge U. P
.,
Cambridge
, 1994
).22.
M.
Rabaud
and
Y.
Couder
, “
A shear-flow instability in a circular geometry
,” J. Fluid Mech.
136
, 291
–319
(1983
).23.
D.
Coles
, “
Transition in circular couette flow
,” J. Fluid Mech.
21
(3
), 385
–425
(1965
).24.
D. G.
Andrews
, An Introduction to Atmospheric Physics
(
Cambridge U. P
.,
Cambridge
, 2010
).25.
G.
Vallis
, Atmospheric and Oceanic Fluid Dynamics
, 1st ed. (
Cambridge U. P.
,
Cambridge
, 2006
).26.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0002438 for Video clip of demonstration: VideoS1; Video clip of numerical simulation (slow motion): VideoS2; Video clip of numerical simulation (real time): VideoS3; Video clip of taller, narrower configuration (120 mm diameter by 100 mm deep): VideoS4; and Video clip of configuration with rigid lid: VideoS5.
© 2020 American Association of Physics Teachers.
2020
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.