We construct an electronic circuit for mimicking a single neuron's behavior in connection with the dynamics of the Hodgkin–Huxley mathematical model. Our results show that the electronic neuron, even though it contains binary-state circuitry components, displays a timing interplay between the ion channels, which is consistent with the corresponding timing encountered in the model equations. This is at the core of the mechanism determining not only the creation of action potentials but also the neuronal firing rate output. This work is suitable for educational purposes in physics, mathematical modeling, electronics, and neurophysiology and can be extended for implementation in networked neurons for more advanced studies of neuronal behaviors.

1.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
(
4
),
500
544
(
1952
).
2.
J.
Sitt
and
J.
Aliaga
, “
Versatile biologically inspired electronic neuron
,”
Phys. Rev. E
76
,
051919
(
2007
).
3.
J. Z.
Young
, “
The functioning of the giant nerve fibres of the squid
,”
J. Exp. Biol.
15
(
2
),
170
185
(
1938
); available at https://jeb.biologists.org/content/15/2/170.short.
4.
K. S.
Cole
, “
Dynamic electrical characteristics of the squid axon membrane
,”
Arch. Des. Sci. Physiol.
3
(
2
),
253
258
(
1949
); available at https://www.worldcat.org/title/dynamic-electrical-characteristics-of-the-squid-axon-membrane/oclc/992725295.
5.
M. F.
Bear
,
B. W.
Connors
, and
M. A.
Paradiso
,
Neuroscience, Exploring the Brain
, 3rd ed. (
Lippincott Williams & Wilkins
,
Baltimore
,
2007
).
6.
W.
Gerstner
,
W. M.
Kistler
,
R.
Naud
, and
L.
Paninski
,
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
(
Cambridge U.P
.,
Cambridge
,
2014
).
7.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
MIT Press
,
Cambridge
,
2007
).
8.
T.
Pereira
,
M. S.
Baptista
,
J.
Kurths
, and
M. B.
Reyes
, “
Onset of phase synchronization in neurons with chemical synapse
,”
Int. J. Bifurcation Chaos
17
(
10
),
3545
3549
(
2007
).
9.
S.
Postnova
,
E.
Rosa
, and
H.
Braun
, “
Neurones and synapses for systemic models of psychiatric disorders
,”
Pharmacopsychiatry
43
(
S01
),
S82
S91
(
2010
).
10.
C.
Finke
,
J. A.
Freund
,
E.
Rosa
, Jr.
,
H. A.
Braun
, and
U.
Feudel
, “
On the role of subthreshold currents in the Huber–Braun cold receptor model
,”
Chaos
20
(
4
),
045107
(
2010
).
11.
T. L.
Prado
,
S. R.
Lopes
,
C. A. S.
Batista
,
J.
Kurths
, and
R. L.
Viana
, “
Synchronization of bursting Hodgkin–Huxley-type neurons in clustered networks
,”
Phys. Rev. E
90
(
3
),
032818
(
2014
).
12.
R.
Follmann
,
E.
Rosa
, Jr.
, and
W.
Stein
, “
Dynamics of signal propagation and collision in axons
,”
Phys. Rev. E
92
(
3
),
032707
(
2015
).
13.
S. G.
Waxman
, “
Sodium channels, the electrogenisome and the electrogenistat: Lessons and questions from the clinic
,”
J. Physiol.
590
(
11
),
2601
2612
(
2012
).
14.
D.
Noble
,
A.
Garny
, and
P. J.
Noble
, “
How the Hodgkin–Huxley equations inspired the cardiac physiome project
,”
J. Physiol.
590
(
11
),
2613
2628
(
2012
).
15.
S.
Bahar
and
F.
Moss
, “
Stochastic resonance and synchronization in the crayfish caudal photoreceptor
,”
Math. Biosci.
188
(
1-2
),
81
97
(
2004
).
16.
B.
Lindner
,
J.
Garcia-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
(
6
),
321
424
(
2004
).
17.
C.
Finke
,
J. A.
Freund
,
E.
Rosa
, Jr.
,
P. H.
Bryant
,
H. A.
Braun
, and
U.
Feudel
, “
Temperature-dependent stochastic dynamics of the Huber-Braun neuron model
,”
Chaos
21
(
4
),
047510
(
2011
).
18.
P.
Horowitz
and
W.
Hill
,
The Art of Electronics
, 3rd ed. (
Cambridge
,
Cambridge, U.K.
,
2015
), p.
237
.
19.
D.
Shchapin
, “
Dynamics of two neuronlike elements with inhibitory feedback
,”
J. Commun. Technol. Electron.
54
(
2
),
175
184
(
2009
).
20.
D.
Linaro
,
T.
Poggi
, and
M.
Storace
, “
Experimental bifurcation diagram of a circuit-implemented neuron model
,”
Phys. Lett. A
374
(
45
),
4589
4593
(
2010
).
21.
C.
Meunier
and
I.
Segev
, “
Playing the devil's advocate: Is the Hodgkin–Huxley model useful?
,”
Trends Neurosci.
25
(
11
),
558
563
(
2002
).
22.
R.
Llinas
,
R.
Baker
, and
C.
Sotelo
, “
Electrotonic coupling between neurons in cat inferior olive
,”
J. Neurophysiol.
37
(
3
),
560
571
(
1974
).
23.
A.-D.
Almási
,
S.
Woźniak
,
V.
Cristea
,
Y.
Leblebici
, and
T.
Engbersen
, “
Review of advances in neural networks: Neural design technology stack
,”
Neurocomputing
174
,
31
41
(
2016
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.