We present a set of kinesthetic activities that utilize a local positioning system to teach kinematics in the physics classroom or laboratory. The activities build on previously reported activities in scope and complexity, incorporating two-dimensional motion and the simultaneous motions of multiple bodies. In these activities, students act out motions illustrated in graphs of kinematic quantities while holding a local positioning system device that tracks their position. Students are able to watch the data as they are graphed in real-time. These activities provide a kinesthetic experience of kinematics by allowing students to analyze their own movement rather than just the movement of specialized laboratory equipment.

1.
R. K.
Thornton
and
D. R.
Sokoloff
, “
Learning motion concepts using real‐time microcomputer‐based laboratory tools
,”
Am. J. Phys.
58
,
858
867
(
1990
).
2.
F.
Ferrara
, “
How multimodality works in mathematical activity: Young children graphing motion
,”
Int. J. Sci. Math. Educ.
12
,
917
939
(
2013
).
3.
G. J.
Kelly
and
T.
Crawford
, “
Students interaction with computer representations: Analysis of discourse in laboratory groups
,”
J. Res. Sci. Teach.
33
,
693
707
(
1996
).
4.
R.
Nemirovsky
,
C.
Tierney
, and
T.
Wright
, “
Body motion and graphing
,”
Cognit. Instr.
16
,
119
172
(
1998
).
5.
L.
Radford
, “
Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings
,”
Educ. Stud. Math.
70
,
111
126
(
2008
).
6.
O.
Robutti
, “
Motion, technology, gesture in interpreting graphs
,”
Int. J. Technol. Math. Educ.
13
,
117
126
(
2006
).
7.
N. D.
Fleming
, “
I'm different; not dumb. Modes of presentation (V.A.R.K.) in the tertiary classroom
,”
Res. Dev. Higher Educ.
18
,
308
313
(
1995
).
8.
W. L.
Leite
,
M.
Svinicki
, and
Y.
Shi
, “
Educational and psychological measurement
,”
Educ. Psychol. Meas.
70
,
323
339
(
2009
).
9.
P. R.
Husmann
and
V. D.
Oloughlin
, “
Another nail in the coffin for learning styles? Disparities among undergraduate anatomy students' study strategies, class performance, and reported VARK learning styles
,”
Anat. Sci. Educ.
12
,
6
19
(
2018
).
10.
O.
Douglas
,
K. S.
Burton
, and
N.
Rese-Durham
, “
The effects of the multiple intelligence teaching strategy on the academic achievement of eighth grade math students
,”
J. Instr. Psychol.
35
,
182
187
(
2008
).
11.
C.
Kontra
,
D. J.
Lyons
,
S. M.
Fischer
, and
S. L.
Beilock
, “
Physical experience enhances science learning
,”
Psychol. Sci.
26
,
737
749
(
2015
).
12.
J.
Solomon
,
R.
Bevan
,
A.
Frost
,
H.
Reynolds
,
M.
Summers
, and
C.
Zimmerman
, “
Can pupils learn through their own movements? A study of the use of a motion sensor interface
,”
Phys. Educ.
26
,
345
349
(
1991
).
13.
W.
Struck
and
R.
Yerrick
, “
The effect of data acquisition-probeware and digital video analysis on accurate graphical representation of kinetics in a high school physics class
,”
J. Sci. Educ. Technol.
19
,
199
211
(
2009
).
14.
C.
Duijzer
,
M. V. D.
Heuvel-Panhuizen
,
M.
Veldhuis
,
M.
Doorman
, and
P.
Leseman
, “
Embodied learning environments for graphing motion: A systematic literature review
,”
Educ. Psychol. Rev.
31
,
597
629
(
2019
).
15.
H.
Brasell
, “
The effect of real-time laboratory graphing on learning graphic representations of distance and velocity
,”
J. Res. Sci. Teach.
24
,
385
395
(
1987
).
16.
J. R.
Mokros
and
R. F.
Tinker
, “
The impact of microcomputer-based labs on childrens ability to interpret graphs
,”
J. Res. Sci. Teach.
24
,
369
383
(
1987
).
17.
D.
Stylianou
,
B.
Smith
, and
J. J.
Kaput
, “
Math in motion: Using CBRs to enact functions
,”
J. Comput. Math. Sci. Teach.
24
(
3
),
299
324
(
2005
).
18.
M. T.
Svec
,
W. J.
Boone
, and
C.
Olmer
, “
Changes in a preservice elementary teachers physics course
,”
J. Sci. Teach. Educ.
6
,
79
88
(
1995
).
19.
M.
Svec
, “
Improving graphing interpretation skills and understanding of motion using microcomputer based laboratories
,”
Electron. J. Sci. Educ.
3
(
4
) (
1999
), retrieved from <http://ejse.southwestern.edu/article/view/7614>.
20.
S.
Chen
,
W.-H.
Chang
,
C.-H.
Lai
, and
C.-Y.
Tsai
, “
A comparison of students' approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories
,”
Sci. Educ.
98
,
905
935
(
2014
).
21.
R. F.
Brena
,
J. P.
García-Vázquez
,
C. E.
Galván-Tejada
,
D.
Muñoz-Rodriguez
,
C.
Vargas-Rosales
, and
J.
Fangmeyer
, “
Evolution of indoor positioning technologies: A survey
,”
J. Sens.
2017
,
1
21
.
22.
D.
MacIsaac
and
A.
Hämäläinen
, “
Physics and technical characteristics of ultrasonic sonar systems
,”
Phys. Teach.
40
,
39
46
(
2002
).
23.
E.
Mylott
,
J.
Dunlap
,
L.
Lampert
, and
R.
Widenhorn
, “
Kinesthetic activities for the classroom
,”
Phys. Teach.
52
,
525
528
(
2014
).
24.
C.
Siebert
,
P. R.
Destefano
, and
R.
Widenhorn
, “
Comparative modeling of free fall and drag-enhanced motion in the classical physics drop experiment
,”
Eur. J. Phys.
40
,
045004
(
2019
).
25.
P. R.
Destefano
,
C.
Siebert
, and
R.
Widenhorn
, “
Using a local positioning system to track 2D motion
,”
Phys. Teach.
57
,
508
509
(
2019
).
26.
C.
Siebert
,
P. R.
Destefano
, and
R.
Widenhorn
, “
Teaching physics with a local positioning system
,”
Phys. Teach.
57
,
428
429
(
2019
).
28.
NGSS lead states
, next generation science standards: For states, by states,
2013
<http://www.nextgenscience.org/>.
29.
College board, Science Standards, AP Central: AP Courses and Exams <https://apcentral.collegeboard.org/courses/resources/science-practices>.
30.
J.
Kozminski
,
H. J.
Lewandowski
,
N.
Beverly
,
S.
Lindaas
,
D.
Deardorff
,
A.
Reagan
,
R.
Dietz
,
R.
Tagg
,
M.
EblenZayas
,
J.
Williams
,
R.
Hobbs
, and
B. M.
Zwickl
,
AAPT Recommendations for the Undergraduate Physics Laboratory Curriculum
(
AAPT
,
College Park, MD
,
2014
), retrieved from <https://www.aapt.org/resources/upload/labguidlinesdocument_ebendorsed_nov10.pdf>.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.