This article outlines a generalization of the thermal resistance concept used to model and quantify the rates of spontaneous heat transfer. This leads to the natural corollary that a Carnot cycle possesses zero thermal resistance and provides restatements of the Clausius and Kelvin statements of the second law of thermodynamics. Subsequently, basic aspects of a general thermal engine are modeled by the series combination of two non-zero thermal resistances with a Carnot cycle. With constant thermal resistances, the efficiency at maximum power is found to be in agreement with previous literature also concluding that engine power is zero at the Carnot efficiency. An explicit form limiting maximum power output to system thermal resistance and reservoir temperatures is given. Minimizing the thermal resistance maximizes power output, congruent with maximizing heat flow and entropy production. Implications of this model towards practical power generation are presented.

1.
E.
Fermi
,
Thermodynamics
(
Dover Publications
,
New York
,
1936
).
2.
H. C.
Van Ness
,
Understanding Thermodynamics
(
Dover Publications
,
New York
,
1983
).
3.
A.
Bejan
,
Entropy Generation Through Heat and Fluid Flow
, 1st ed. (
Wiley
,
New York
,
1982
).
This text has remained relatively obscure, however
, “
Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes
,”
J. Appl. Phys.
79
,
1191
1218
(
1996
) by the same author presents many of the key elements in review form.
4.
S.
Carnot
,
E.
Clapeyron
, and
R.
Clausius
,
Reflections on the Motive Power of Fire, and Other Papers on the Second Law of Thermodynamics
, edited by
E.
Mendoza
(
Dover Publications
,
New York
,
1988
).
5.
F. L.
Curzon
and
B.
Ahlborn
, “
Efficiency of a Carnot engine at maximum power output
,”
Am. J. Phys.
43
,
22
24
(
1975
).
6.
A.
Vaudrey
,
F.
Lanzetta
, and
M.
Feidt
, “
H. B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines
,”
J. Non-Equilib. Thermodyn.
39
,
199
203
(
2014
).
7.
B. H.
Lavenda
, “
The thermodynamics of endoreversible engines
,”
Am. J. Phys.
75
,
169
175
(
2007
).
8.
E. P.
Gyftopoulous
, “
Infinite time (reversible) versus finite time (irreversible) thermodynamics: A misconcieved distinction
,”
Energy
24
,
1035
1039
(
1999
).
9.
C.
Van den Broeck
, “
Thermodynamic efficiency at maximum power
,”
Phys. Rev. Lett.
95
,
190602
(
2005
).
10.
E. N.
Miranda
, “
On the maximum efficiency of realistic heat engines
,”
Int. J. Mech. Eng. Educ.
35
,
76
78
(
2007
).
11.
M. J.
Moran
and
H. N.
Shapiro
,
Fundamentals of Engineering Thermodynamics
, 4th ed. (
Wiley
,
New York
,
2000
).
12.
I.
Prigogine
, “
Time, structure, and fluctuations
,”
Science
201
,
777
785
(
1978
).
13.
D. H.
Johnson
, “
Origins of the equivalent circuit concept: The current-source equivalent
,”
Proc. IEEE
91
(
5
),
817
821
(
2003
).
14.
D. H.
Johnson
, “
Origins of the equivalent circuit concept: The voltage-source equivalent
,”
Proc. IEEE
91
(
4
),
636
640
(
2003
).
15.
A.
De Vos
, “
Reflections on the power delivered by endoreversible engines
,”
J. Phys.
20
,
232
236
(
1987
).
16.
J. M.
Gordon
, “
Maximum power point characteristics of heat engines as a general thermodynamic problem
,”
Am. J. Phys.
57
,
1136
1142
(
1989
).
17.
H. S.
Leff
, “
Thermal efficiency at maximum work output: New results for old heat engines
,”
Am. J. Phys.
55
,
602
610
(
1987
).
18.
A.
Kleidon
,
Y.
Malhi
, and
P. M.
Cox
, “
Maximum entropy production in environmental and ecological systems
,”
Philos. Trans. R. Soc. B
365
,
1297
1302
(
2010
).
19.
L. M.
Martyushev
and
V. D.
Seleznev
, “
Maximum entropy production principle in physics, chemistry and biology
,”
Phys. Rep.
426
,
1
45
(
2006
).
20.
S. K.
Mishra
and
R. P.
Dahiya
, “
Adiabatic flame temperature of hydrogen in combination with gaseous fuels
,”
Int. J. Hydrogen Energy
14
,
839
844
(
1989
).
21.
B. J.
McCaffery
, “
Purely buoyant diffusion flames: Some experimental results
,”
Report No. NBSIR 79-1910
(
National Bureau of Standards
,
1979
).
22.
P. H.
Riley
, “
The myth of the high-efficiency external-combustion Stirling engine
,”
Engineering
07
,
789
795
(
2015
).
23.
J. B.
Heywood
and
O. Z.
Welling
, “
Trends in performance characteristics of modern automobile SI an diesel engines
,”
SAE Int. J. Engines
2
(
1
),
1650
1662
(
2009
).
24.
H. S.
Leff
, “
Thermodynamics of combined-cycle electric power plants
,”
Am. J. Phys.
80
,
515
518
(
2012
).
25.
C. E.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
, 1st ed. (
The University of Illinois Press
,
Urbana
,
1975
).
26.
R.
Landauer
, “
Irreversibility and heat generation in the computing process
,”
IBM J. Res. Dev.
5
,
183
191
(
1961
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.