I show that it is straightforward to derive numerical methods that conserve the energy of nonlinear oscillators. The derivation is first done for a single particle and then extended to multiple particle systems. Examples considered include the pendulum, the Hénon-Heiles model, and the Fermi-Pasta-Ulam problem. Numerical experiments are shown and comparisons are made with nonconservative methods.

1.
J. M.
Sanz-Serna
, “
Runge-Kutta schemes for Hamiltonian systems
,”
BIT
28
(
4
),
877
883
(
1988
).
2.
O.
Gonzalez
, “
Time integration and discrete Hamiltonian systems
,”
J. Nonlinear Sci.
6
(
5
),
449
467
(
1996
).
3.
R. A.
LaBudde
and
D.
Greenspan
, “
Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. I. Motion of a single particle
,”
Numer. Math.
25
(
4
),
323
346
(
1975
).
4.
R. I.
McLachlan
,
G. R. W.
Quispel
, and
N.
Robidoux
, “
Geometric integration using discrete gradients
,”
Philos. Trans. R. Soc. London A
357
(
1754
),
1021
1045
(
1999
).
5.
R. I.
McLachlan
and
G. R. W.
Quispel
, “
Geometric integrators for ODEs
,”
J. Phys. A: Math. Gen.
39
(
19
),
5251
5285
(
2006
).
6.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
, 2nd ed. (
Springer
,
New York
,
2010
).
7.
D.
Donnelly
and
E.
Rogers
, “
Symplectic integrators: An introduction
,”
Am. J. Phys.
73
(
10
),
938
945
(
2005
).
8.
B.
Leimkuhler
and
S.
Reich
,
Simulating Hamiltonian Dynamics
(
Cambridge U.P
.,
Cambridge
,
2004
).
9.
A.
Lew
,
J. E.
Marsden
,
M.
Ortiz
, and
M.
West
, “
An overview of variational integrators
,” in
Finite Element Methods: 1970's and Beyond
, edited by
L. P.
Franca
,
T. E.
Tezduyar
, and
A.
Masud
(
CIMNE
,
Barcelona, Spain
,
2004
), pp.
98
115
.
10.
G.
Zhong
and
J. E.
Marsden
, “
Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators
,”
Phys. Lett. A
133
(
3
),
134
139
(
1988
).
11.
C.
Kane
,
J. E.
Marsden
, and
M.
Ortiz
, “
Symplectic-energy-momentum preserving variational integrators
,”
J. Math. Phys.
40
(
7
),
3353
3371
(
1999
).
12.
M.
Geradin
and
D.
Rixen
,
Mechanical Vibrations: Theory and Applications to Structural Dynamics
, 2nd ed. (
John Wiley & Sons
,
Chichester, England
,
1997
).
13.
C.
Kane
,
J. E.
Marsden
,
M.
Ortiz
, and
M.
West
, “
Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems
,”
Int. J. Numer. Methods Eng.
49
(
10
),
1295
1325
(
2000
).
14.
A.
Harten
, “
On high resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
(
3
),
357
393
(
1983
).
15.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
(
3
),
357
372
(
1981
).
16.
E.
Celledoni
,
R. I.
McLachlan
,
B.
Owren
, and
G. R. W.
Quispel
, “
Geometric properties of Kahan's method
,”
J. Phys. A: Math. Gen.
46
(
2
),
025201
(
2013
).
17.
M. H.
Holmes
,
Introduction to Scientific Computing and Data Analysis
(
Springer
,
New York
,
2016
).
18.
R. I.
McLachlan
,
M.
Perlmutter
, and
G. R. W.
Quispel
, “
On the nonlinear stability of symplectic integrators
,”
BIT Numer. Math.
44
(
1
),
99
117
(
2004
).
19.
B.
Cano
and
J. M.
Sanz-Serna
, “
Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems
,”
SIAM J. Numer. Anal.
34
(
4
),
1391
1417
(
1997
).
20.
M.
Calvo
,
M. P.
Laburta
,
J. I.
Montijano
, and
L.
Randez
, “
Error growth in the numerical integration of periodic orbits
,”
Math. Comput. Simul.
81
(
12
),
2646
2661
(
2011
).
21.
M. H.
Holmes
,
Introduction to Numerical Methods in Differential Equations
(
Springer
,
New York
,
2007
).
22.
T.
Schlick
,
Molecular Modeling and Simulation: An Interdisciplinary Guide
, 2nd ed. (
Springer
,
New York
,
2010
).
23.
A.
Morbidelli
, “
Modern integrations of solar system dynamics
,”
Ann. Rev. Earth Planet. Sci.
30
(
1
),
89
112
(
2002
).
24.
L.
Shampine
,
Numerical Solution of Ordinary Differential Equations
(
Chapman and Hall/CRC
,
London
,
1994
).
25.
B. R.
Holstein
, “
The van der Waals interaction
,”
Am. J. Phys.
69
(
4
),
441
449
(
2001
).
26.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons
,
Hoboken, NJ
,
2005
).
27.
M.
Hénon
and
C.
Heiles
, “
The applicability of the third integral of motion: Some numerical experiments
,”
Astron. J.
69
,
73
79
(
1964
).
28.
G.
Gallavotti
,
The Fermi-Pasta-Ulam Problem: A Status Report
(
Springer
,
New York
,
2008
).
29.
T. P.
Weissert
,
The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem
(
Springer
,
New York
,
2012
).
30.
J. L.
Tuck
and
M. T.
Menzel
, “
The superperiod of the nonlinear weighted string (FPU) problem
,”
Adv. Math.
9
(
3
),
399
407
(
1972
).
31.
M. H.
Holmes
,
Introduction to Perturbation Methods
, 2nd ed. (
Springer-Verlag
,
New York
,
2013
).
32.
R. A.
LaBudde
and
D.
Greenspan
, “
Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. II. Motion of a system of particles
,”
Numer. Math.
26
(
1
),
1
16
(
1976
).
33.
A. J.
Chorin
,
T. J. R.
Hughes
,
M. F.
McCracken
, and
J. E.
Marsden
, “
Product formulas and numerical algorithms
,”
Commun. Pure Appl. Math.
31
(
2
),
205
256
(
1978
).
34.
J. C.
Simo
,
N.
Tarnow
, and
K. K.
Wong
, “
Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics
,”
Comput. Methods Appl. Mech. Eng.
100
(
1
),
63
116
(
1992
).
35.
M.
Dahlby
,
B.
Owren
, and
T.
Yaguchi
, “
Preserving multiple first integrals by discrete gradients
,”
J. Phys. A: Math. Theor.
44
(
30
),
305205
(
2011
).
36.
L.
Brugnano
,
G.
Frasca Caccia
, and
F.
Iavernaro
, “
Energy conservation issues in the numerical solution of the semilinear wave equation
,”
Appl. Math. Comput.
270
(
1
),
842
870
(
2015
).
37.
E.
Celledoni
,
V.
Grimm
,
R. I.
McLachlan
,
D. I.
McLaren
,
D.
O'Neale
,
B.
Owren
, and
G. R. W.
Quispel
, “
Preserving energy resp. dissipation in numerical PDEs using the average vector field method
,”
J. Comput. Phys.
231
(
20
),
6770
6789
(
2012
).
38.
S.
Cray
, personal communication, as reported by Joseph E. Flaherty and Stephen F. Davis, July
1989
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.