I show that it is straightforward to derive numerical methods that conserve the energy of nonlinear oscillators. The derivation is first done for a single particle and then extended to multiple particle systems. Examples considered include the pendulum, the Hénon-Heiles model, and the Fermi-Pasta-Ulam problem. Numerical experiments are shown and comparisons are made with nonconservative methods.
REFERENCES
1.
J. M.
Sanz-Serna
, “
Runge-Kutta schemes for Hamiltonian systems
,” BIT
28
(4
), 877
–883
(1988
).2.
O.
Gonzalez
, “
Time integration and discrete Hamiltonian systems
,” J. Nonlinear Sci.
6
(5
), 449
–467
(1996
).3.
R. A.
LaBudde
and
D.
Greenspan
, “
Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. I. Motion of a single particle
,” Numer. Math.
25
(4
), 323
–346
(1975
).4.
R. I.
McLachlan
,
G. R. W.
Quispel
, and
N.
Robidoux
, “
Geometric integration using discrete gradients
,” Philos. Trans. R. Soc. London A
357
(1754
), 1021
–1045
(1999
).5.
R. I.
McLachlan
and
G. R. W.
Quispel
, “
Geometric integrators for ODEs
,” J. Phys. A: Math. Gen.
39
(19
), 5251
–5285
(2006
).6.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
, 2nd ed. (
Springer
,
New York
, 2010
).7.
D.
Donnelly
and
E.
Rogers
, “
Symplectic integrators: An introduction
,” Am. J. Phys.
73
(10
), 938
–945
(2005
).8.
B.
Leimkuhler
and
S.
Reich
, Simulating Hamiltonian Dynamics
(
Cambridge U.P
.,
Cambridge
, 2004
).9.
A.
Lew
,
J. E.
Marsden
,
M.
Ortiz
, and
M.
West
, “
An overview of variational integrators
,” in Finite Element Methods: 1970's and Beyond
, edited by
L. P.
Franca
,
T. E.
Tezduyar
, and
A.
Masud
(
CIMNE
,
Barcelona, Spain
, 2004
), pp. 98
–115
.10.
G.
Zhong
and
J. E.
Marsden
, “
Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators
,” Phys. Lett. A
133
(3
), 134
–139
(1988
).11.
C.
Kane
,
J. E.
Marsden
, and
M.
Ortiz
, “
Symplectic-energy-momentum preserving variational integrators
,” J. Math. Phys.
40
(7
), 3353
–3371
(1999
).12.
M.
Geradin
and
D.
Rixen
, Mechanical Vibrations: Theory and Applications to Structural Dynamics
, 2nd ed. (
John Wiley & Sons
,
Chichester, England
, 1997
).13.
C.
Kane
,
J. E.
Marsden
,
M.
Ortiz
, and
M.
West
, “
Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems
,” Int. J. Numer. Methods Eng.
49
(10
), 1295
–1325
(2000
).14.
A.
Harten
, “
On high resolution schemes for hyperbolic conservation laws
,” J. Comput. Phys.
49
(3
), 357
–393
(1983
).15.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,” J. Comput. Phys.
43
(3
), 357
–372
(1981
).16.
E.
Celledoni
,
R. I.
McLachlan
,
B.
Owren
, and
G. R. W.
Quispel
, “
Geometric properties of Kahan's method
,” J. Phys. A: Math. Gen.
46
(2
), 025201
(2013
).17.
M. H.
Holmes
, Introduction to Scientific Computing and Data Analysis
(
Springer
,
New York
, 2016
).18.
R. I.
McLachlan
,
M.
Perlmutter
, and
G. R. W.
Quispel
, “
On the nonlinear stability of symplectic integrators
,” BIT Numer. Math.
44
(1
), 99
–117
(2004
).19.
B.
Cano
and
J. M.
Sanz-Serna
, “
Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems
,” SIAM J. Numer. Anal.
34
(4
), 1391
–1417
(1997
).20.
M.
Calvo
,
M. P.
Laburta
,
J. I.
Montijano
, and
L.
Randez
, “
Error growth in the numerical integration of periodic orbits
,” Math. Comput. Simul.
81
(12
), 2646
–2661
(2011
).21.
M. H.
Holmes
, Introduction to Numerical Methods in Differential Equations
(
Springer
,
New York
, 2007
).22.
T.
Schlick
, Molecular Modeling and Simulation: An Interdisciplinary Guide
, 2nd ed. (
Springer
,
New York
, 2010
).23.
A.
Morbidelli
, “
Modern integrations of solar system dynamics
,” Ann. Rev. Earth Planet. Sci.
30
(1
), 89
–112
(2002
).24.
L.
Shampine
, Numerical Solution of Ordinary Differential Equations
(
Chapman and Hall/CRC
,
London
, 1994
).25.
B. R.
Holstein
, “
The van der Waals interaction
,” Am. J. Phys.
69
(4
), 441
–449
(2001
).26.
C.
Kittel
, Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons
,
Hoboken, NJ
, 2005
).27.
M.
Hénon
and
C.
Heiles
, “
The applicability of the third integral of motion: Some numerical experiments
,” Astron. J.
69
, 73
–79
(1964
).28.
G.
Gallavotti
, The Fermi-Pasta-Ulam Problem: A Status Report
(
Springer
,
New York
, 2008
).29.
T. P.
Weissert
, The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem
(
Springer
,
New York
, 2012
).30.
J. L.
Tuck
and
M. T.
Menzel
, “
The superperiod of the nonlinear weighted string (FPU) problem
,” Adv. Math.
9
(3
), 399
–407
(1972
).31.
M. H.
Holmes
, Introduction to Perturbation Methods
, 2nd ed. (
Springer-Verlag
,
New York
, 2013
).32.
R. A.
LaBudde
and
D.
Greenspan
, “
Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. II. Motion of a system of particles
,” Numer. Math.
26
(1
), 1
–16
(1976
).33.
A. J.
Chorin
,
T. J. R.
Hughes
,
M. F.
McCracken
, and
J. E.
Marsden
, “
Product formulas and numerical algorithms
,” Commun. Pure Appl. Math.
31
(2
), 205
–256
(1978
).34.
J. C.
Simo
,
N.
Tarnow
, and
K. K.
Wong
, “
Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics
,”Comput. Methods Appl. Mech. Eng.
100
(1
), 63
–116
(1992
).35.
M.
Dahlby
,
B.
Owren
, and
T.
Yaguchi
, “
Preserving multiple first integrals by discrete gradients
,” J. Phys. A: Math. Theor.
44
(30
), 305205
(2011
).36.
L.
Brugnano
,
G.
Frasca Caccia
, and
F.
Iavernaro
, “
Energy conservation issues in the numerical solution of the semilinear wave equation
,” Appl. Math. Comput.
270
(1
), 842
–870
(2015
).37.
E.
Celledoni
,
V.
Grimm
,
R. I.
McLachlan
,
D. I.
McLaren
,
D.
O'Neale
,
B.
Owren
, and
G. R. W.
Quispel
, “
Preserving energy resp. dissipation in numerical PDEs using the average vector field method
,” J. Comput. Phys.
231
(20
), 6770
–6789
(2012
).38.
S.
Cray
, personal communication, as reported by Joseph E. Flaherty and Stephen F. Davis, July 1989
.© 2020 American Association of Physics Teachers.
2020
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.