The gravitational field of a massive, filamentary ring is considered. We provide an analytic expression for the gravitational potential and demonstrate that the exact gravitational potential and its gradient—the gravitational force-field—is not central. Hence, it is a good candidate to discuss the difference between the concepts of center of mass and center of gravity. We focus on other consequences of reduced symmetry, e.g., only the z-component of the angular momentum is conserved. However, the remnant high symmetry of this system also ensures that there are special classes of motions which are restricted to invariant subspaces; thus, depending on the initial condition, the dynamics of a point particle is integrable. We also show that periodic orbits in the equatorial plane external to the ring are possible, but only if the angular momentum is above a threshold value. In this case, the orbits are stable.

1.
R. R. D.
Mourão
, in
Cosmology Across Cultures
, Astronomical Society of the Pacific Conference Series Vol.
409
, edited by
J.
Rubiño-Martín
,
J.
Belmonte
,
F.
Prada
, and
A.
Alberdi
(
Astronomical Society of the Pacific
,
San Francisco
,
2009
), p.
297
.
2.
R. P.
Norris
and
D. W.
Hamacher
, “
Astronomical symbolism in Australian aboriginal rock art
,”
Rock Art Res.
28
,
99
106
(
2011
).
3.
E.
Jones
and
R.
Childers
,
Contemporary College Physics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1993
).
4.
D.
Halliday
,
R.
Resnick
, and
J.
Walker
,
Fundamentals of Physics
, Wiley International Edition, 7th ed. (
Wiley
,
Denver
,
2004
).
5.
D.
Giancoli
,
Physics for Scientists and Engineers with Modern Physics
(
Pearson Education
,
Edinburgh Gate, Harlow, UK
,
2008
).
6.
R.
Serway
and
R.
Beichner
,
Physics for Scientists and Engineers, Available Titles CengageNOW Series
, 5th ed. (
Saunders College Publishing
,
Philadelphia/London
,
2000
).
7.
P.
Urone
,
R.
Hinrichs
,
K. Dirks, and Rice University, College Physics
(
OpenStax College, Rice University
,
Houston, TX
,
2012
).
8.
P. G.
Hewitt
,
Conceptual Physics Fundamentals: Pearson New International Edition
, Pearson Custom Library (
Pearson Education, Limited
,
Edinburgh Gate, Harlow, UK
,
2013
).
9.
R. D.
Knight
,
Physics for Scientists and Engineers: A Strategic Approach: With Modern Physics
, 3rd ed. (
Pearson Education, Limited
,
Boston, MA/London
,
2013
).
10.
D.
Green
,
More Physics with Matlab (with Companion Media Pack)
, edited by
Dan
Green
(
World Scientific
,
Singapore
,
2015
).
11.

In all textbooks cited before, all mentions are that in a uniform gravitational field, the center of mass and center of gravity coincide. While this practice is defensible from the view of practicality, we feel that pedagogically is questionable: an exceptional case (point particle or perfectly spherical objects) is taught. Only Ref. 6, among the already cited textbooks, treats non-uniform mass distribution, and non-spherical bodies explicitly in a subsection.

12.
C. F.
Gauss
, “
Determinatio attractionis, quam in punctum quodvis positionis datæexerceret planeta, si eius massa per totam orbitam ratione temporis, quo singulae partes describuntur, uniformiter esset dispertita
,”
Comm. Soc. Reg. Sci. Gött.
4
,
21
48
(
1818
),
also in
C. F.
Gauss
,
Werke
(
Göttingen
,
1866
), Band III, pp.
331
355
.
13.
A.
Abad
and
F.
Belizon
, in
Visual Double Stars: Formation, Dynamics and Evolutionary Tracks, Astrophysics and Space Science Library
, edited by
J.
Docobo
,
A.
Elipe
, and
H.
McAlister
(
Springer
,
Netherlands
,
1997
), pp.
313
320
.
14.
D.
Boccaletti
and
G.
Pucacco
,
Theory of Orbits: Perturbative and Geometrical Methods, Astronomy and Astrophysics Library
(
Springer
,
Berlin, Heidelberg
,
2013
).
15.
M.
Zeilik
,
Astronomy: The Evolving Universe
(
Cambridge U. P.
,
Cambridge, UK
,
2002
).
16.
B.
Carroll
and
D.
Ostlie
,
An Introduction to Modern Astrophysics
(
Cambridge U.P.
,
Cambridge, UK
,
2017
).
17.
J. C.
Theys
and
E. A.
Spiegel
, “
Ring galaxies. I
,”
Astrophys. J.
208
,
650
–661 (
1976
).
18.
J. C.
Theys
and
E. A.
Spiegel
, “
Ring galaxies. II
,”
Astrophys. J.
212
,
616
–619 (
1977
).
19.
M.
Pätzold
,
T.
Andert
,
M.
Hahn
,
S. W.
Asmar
,
J.-P.
Barriot
,
M. K.
Bird
,
B.
Häusler
,
K.
Peter
,
S.
Tellmann
,
E.
Grün
,
P. R.
Weissman
,
H.
Sierks
,
L.
Jorda
,
R.
Gaskell
,
F.
Preusker
, and
F.
Scholten
, “
A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field
,”
Nature
530
,
63
–65 (
2016
).
20.
A. M.
Hofmeister
,
R. E.
Criss
, and
E. M.
Criss
, “
Verified solutions for the gravitational attraction to an oblate spheroid: Implications for planet mass and satellite orbits
,”
Planet. Space Sci.
152
,
68
–81 (
2018
).
21.
F. R.
Zypman
, “
Off-axis electric field of a ring of charge
,”
Am. J. Phys.
74
,
295
–300 (
2006
).
22.
J.
Selvaggi
,
S.
Salon
, and
M. V. K.
Chari
, “
An application of toroidal functions in electrostatics
,”
Am. J. Phys.
75
,
724
–727 (
2007
).
23.
P.
Byrd
and
M.
Friedman
,
Handbook of Elliptic Integrals for Engineers and Physicists, Die Grundlehren der mathematischen Wissenschaften
(
Springer-Verlag
,
Berlin, Heidelberg
,
1954
).
24.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions, Tenth Printing with Corrections
(
United States Department of Commerce, National Bureau of Standards (NBS), Dover
,
New York
,
1972
).
25.
H.
Lass
and
L.
Blitzer
, “
The gravitational potential due to uniform disks and rings
,”
Celestial Mech.
30
,
225
–228 (
1983
).
26.

An even simpler approach would be to first substitute r=0 into the expression of the gravitational potential and obtain V(z)=GM/R2+z2 and then differentiate this expression twice and solve the z2V(z)=0 equation for z.

27.
L.
Landau
and
E.
Lifshitz
,
Mechanics
, 3rd ed. (
Elsevier Science
,
Butterworth-Heinemann
,
1982
), Vol.
1
.
28.
W. D.
MacMillan
, “
An integrable case in the restricted problem of three bodies
,”
Astron. J.
27
,
11
–13 (
1911
).
29.

For the sake of completeness we provide here the exact expression for the period T=(4/ω)(1/2(12k2))[2E(k2)K(k2)+Π(2k2|k2)] in terms of the complete elliptic integrals of the first, second, and third kind, K, E, and Π, respectively. Their definitions can be found in Byrd and Friedman.23 The power series expansion of this exact expression, up to the second order, agrees with that of given in the text, T(2π/ω)(1+94k2), but derived from a hand-waving argument.

30.
J.
Bertrand
, “
Théoréme relatif au mouvement d'un point attiré vers un centre fixe
,”
C. R. Acad. Sci.
77
,
849
–853 (
1873
).
English Translation:
F. C.
Santos
,
V.
Soares
, and
A. C.
Tort
,
Lat. Am. J. Phys. Educ.
5
,
694
696
(
2011
).
31.
H.
Goldstein
and
C.
Poole
,
Classical Mechanics
, Addison-Wesley Series in Physics, 2nd ed. (
Addison-Wesley Publishing Company
,
London
,
1980
).
32.
V.
Arnold
,
K.
Vogtmann
, and
A.
Weinstein
,
Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics
(
Springer
,
New York
,
1989
).
33.
Y.
Grandati
,
A.
Bérard
, and
F.
Ménas
, “
Inverse problem and Bertrand's theorem
,”
Am. J. Phys.
76
,
782
–787 (
2008
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.