The motion of a handle spinning in space has an odd behavior. It seems to unexpectedly flip back and forth in a periodic manner as seen in a popular YouTube video (“Plasma Ben, Dancing T-handle in zero-g, HD,” <https://www.youtube.com/watch?v=1n-HMSCDYtM>). As an asymmetrical top, its motion is completely described by the Euler equations and the equations of motion have been known for more than a century. However, recent concepts of the geometric phase have allowed a new perspective on this classical problem. Here, we explicitly use the equations of motion to find a closed form expression for the total phase and hence the geometric phase of the force-free asymmetric top and we explore some consequences of this formula with the particular example of the spinning handle for demonstration purposes. As one of the simplest dynamical systems, the asymmetric top should be a canonical example to explore the classical analog of the Berry phase.

1.
Plasma Ben, Dancing T-handle in zero-g, HD
,” <https://www.youtube.com/watch?v=1n-HMSCDYtM>.
2.
H.
Moffatt
, “
Euler's disk and its finite-time singularity
,”
Nature
404
,
833
–834 (
2000
).
3.
M. A.
Jalali
,
M. S.
Sarebangholi
, and
M.-R.
Alam
, “
Terminal retrograde turn of rolling rings
,”
Phys. Rev. E
92
,
032913
(
2015
).
4.
M.
Berry
and
P.
Shukla
, “
Slow manifold and Hannay angle in the spinning top
,”
Eur. J. Phys.
32
,
115
–127 (
2010
).
5.
M.
Berry
and
J.
Hannay
, “
Classical non-adiabatic angles
,”
J. Phys. A
21
,
L325
L331
(
1988
).
6.
R.
Montgomery
, “
How much does the rigid body rotate? A Berry's phase from the 18th century
,”
Am. J. Phys.
59
,
394
–398 (
1991
).
7.
J. H.
Hannay
, “
Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian
,”
J. Phys. A
18
,
221
–230 (
1985
).
8.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
–2007 (
2010
).
9.
R.
Resta
, “
Manifestations of Berry's phase in molecules and condensed matter
,”
J. Phys.: Condens. Matter
12
,
R107
143
(
2000
).
10.
C. A.
Mead
, “
The geometric phase in molecular systems
,”
Rev. Mod. Phys.
64
,
51
–85 (
1992
).
11.
M. V.
Berry
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. London, A
392
,
45
–57 (
1984
).
12.
J.
Anandan
, “
The geometric phase
,”
Nature
360
,
307
–313 (
1992
).
13.
M.
Berry
, “
The geometric phase
,”
Sci. Am.
259
,
46
–55 (
1988
).
14.
L.
Landau
and
E.
Lifshitz
,
Mechanics, Vol. 1 of Course of Theoretical Physics
(
Butterworth Heinemann
,
Oxford, UK
,
1976
).
15.
J.
Lawson
and
M.
Rave
, “
Spacewalks and amusement rides: Illustrations of geometric phase
,”
Math. Mag.
89
,
105
–121 (
2016
).
16.
S.
Gil
, “
A mechanical device to study geometric phases and curvatures
,”
Am. J. Phys.
78
,
384
390
(
2010
).
17.
J.
José
and
E.
Saletan
,
Classical Dynamics: A Contemporary Approach
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
18.
J. E.
Marsden
 et al.,
Lectures on Mechanics
(
Cambridge U.P.
,
Cambridge, UK
,
1992
), Vol. 174.
19.
J.
Robbins
, “
The Hannay angle, thirty years on
,”
J. Phys. A
49
,
431002
(
2016
).
20.
J. B.
Hart
,
R. E.
Miller
, and
R. L.
Mills
, “
A simple geometric model for visualizing the motion of a Foucault pendulum
,”
Am. J. Phys.
55
,
67
70
(
1987
).
21.
M.
Levi
, “
Geometric phases in the motion of rigid bodies
,”
Arch. Ration. Mech. Anal.
122
,
213
–229 (
1993
).
22.
L.
Bates
,
R.
Cushman
, and
E.
Savev
, “
The rotation number and the herpolhode angle in Euler's top
,”
Z. Angew. Math. Phys.
56
,
183
191
(
2005
).
23.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison Wesley
,
San Francisco
,
2002
).
24.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(
Cambridge U.P.
,
Cambridge, UK
,
1988
).
25.
J. W.
Zwanziger
,
M.
Koenig
, and
A.
Pines
, “
Berry's phase
,”
Ann. Rev. Phys. Chem.
41
,
601
646
(
1990
).
26.
M. S.
Ashbaugh
,
C. C.
Chicone
, and
R. H.
Cushman
, “
The twisting tennis racket
,”
J. Dyn. Differ. Equations
3
,
67
85
(
1991
).
27.
M.
Levi
,
Classical Mechanics with Calculus of Variations and Optimal Control: An Intuitive Introduction
(
American Mathematical Society
,
Providence, RI
,
2014
), Vol. 69.
28.
V.
Postell
and
T.
Uzer
, “
Quantization of the asymmetric top using quantum action-angle variables
,”
Phys. Rev. A
41
,
4035
4037
(
1990
).
29.
J. W.
Blaker
,
M.
Sidran
, and
A.
Kaercher
,
Technical Report 472731, RE-155
, Research Department, Grumman Aircraft Engineering Corp., Bethpage, NY,
1962
.
30.
G.
Herzberg
,
Infrared and Raman Spectra of Polyatomic Molecules
(
D. Van Nostrand Company
,
New York
,
1945
).
31.
C. H.
Townes
and
A. L.
Schawlow
,
Microwave Spectroscopy
(
Dover Publications
,
Mineola, NY
,
2013
).
32.
S.
Frauendorf
and
F.
Dönau
, “
Transverse wobbling: A collective mode in odd-A triaxial nuclei
,”
Phys. Rev. C
89
,
014322
(
2014
).
33.
S.
Ødegård
,
G. B.
Hagemann
,
D. R.
Jensen
,
M.
Bergstroem
,
B.
Herskind
,
G.
Sletten
,
S.
Toermaenen
,
J.
Wilson
,
P.
Tjøm
,
I.
Hamamoto
 et al., “
Evidence for the wobbling mode in nuclei
,”
Phys. Rev. Lett.
86
,
5866
5869
(
2001
).
34.
P.
Byrd
and
M.
Friedman
,
Handbook of Elliptic Integrals for Engineers and Physicists
(
Springer-Verlag
,
Berlin
,
1971
).
35.
F. W.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
,
NIST Handbook of Mathematical Functions Hardback and CD-ROM
(
Cambridge U.P.
,
New York
,
2010
).
36.

It might be objected that by the time the initial condition (θω and ϕω) makes it to the xz plane, the angular velocity may no longer be of unit magnitude; in fact, in general, it will not). However, since Eq. (20) is independent of |ω0|, we may renormalize and retain the same Δα, but not necessarily the same exact dynamics. Equivalently (as discussed in Sec. III A), we may rescale our unit of time to give |ω0|=1. This requires scaling the time by the ratio of the periods. The Binet ellipsoid and angular momentum sphere are simply magnified or reduced, but the polhode curve shape is maintained.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.