Microfluidic devices can be used to explore a vast range of phenomena in biophysics and soft-matter physics. While the popularity of these devices is in part driven by the ease of soft-lithography, most research labs still depend upon expensive, clean-room fabrication of photoresist molds, which can make this technique inaccessible to the undergraduate laboratory. However, there are much simpler, if coarser, approaches to designing molds that are capable of producing surprisingly complicated devices. Here, we detail the fabrication and characterization of a microfluidic device for flow cytometry or particle sorting on a chip. Our device is a layered polydimethylsiloxane chip that uses a series of Quake valves to sort. The molds were fabricated on equipment accessible to most undergraduate labs. The techniques and physics we discuss in this manuscript can be employed to create an almost endless variety of devices for learning about complex fluid mechanics, mesoscopic, soft-matter, and biological physics.

1.
A. M.
Streets
and
Y.
Huang
, “
Microfluidics for biological measurements with single-molecule resolution
,”
Curr. Opin. Biotechnol
.
25
,
69
77
(
2014
).
2.
L.
Wang
,
S.
Sánchez
,
B.
Yang
,
W.
Cao
,
X.
Han
,
R.
Karnik
,
V.
Aseyev
,
V.
Balasubramanian
,
J.
Salonen
,
J.
Hirvonen
, and
H. A.
Santos
, “
Self-assembly via microfluidics
,”
Lab Chip
15
,
4383
4386
(
2015
).
3.
D.
Bartolo
,
D. G. A. L.
Aarts
,
D.
Frenkel
,
M.
Dijkstra
,
B. M.
Mulder
,
G. H.
Koenderink
,
B.
Ladoux
,
M.
Bornens
,
P.
Hugenholtz
,
D. A.
Relman
, and
S. R.
Quake
, “
Microfluidics and soft matter: Small is useful
,”
Soft Matter
8
,
10530
10535
(
2012
).
4.
L.
Cai
,
N.
Friedman
, and
X. S.
Xie
, “
Stochastic protein expression in individual cells at the single molecule level
,”
Nature
440
,
358
362
(
2006
).
5.
T. J.
Levario
,
B.
Lim
,
S. Y.
Shvartsman
, and
H.
Lu
, “
Microfluidics for high-throughput quantitative studies of early development
,”
Annu. Rev. Biomed. Eng.
18
,
285
309
(
2016
).
6.
A.
Grimes
,
D. N.
Breslauer
,
M.
Long
,
J.
Pegan
,
L. P.
Lee
, and
M.
Khine
, “
Shrinky-Dink microfluidics: Rapid generation of deep and rounded patterns
,”
Lab Chip
8
,
170
172
(
2008
).
7.
P. A. E.
Piunno
,
A.
Zetina
,
N.
Chu
,
A. J.
Tavares
,
M. O.
Noor
,
E.
Petryayeva
,
U.
Uddayasankar
, and
A.
Veglio
, “
A comprehensive microfluidics device construction and characterization module for the advanced undergraduate analytical chemistry laboratory
,”
J. Chem. Educ.
91
,
902
907
(
2014
).
8.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
1026
(
2005
).
9.
M. A.
Unger
,
H.-P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
, “
Monolithic microfabricated valves and pumps by multilayer soft lithography
,”
Science
288
,
113
116
(
2000
).
10.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
I.
Mezić
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Chaotic mixer for microchannels
,”
Science
295
,
647
651
(
2002
).
11.
H.
Bruus
, “
Chapter 1. Governing equations in microfluidics
,” in
Microscale Acoustofluidics
, edited by
T.
Laurell
and
A.
Lenshof
(
Royal Society of Chemistry
,
London
,
2015
), pp.
1
28
.
12.
G.-B.
Lee
,
C.-C.
Chang
,
S.-B.
Huang
, and
R.-J.
Yang
, “
The hydrodynamic focusing effect inside rectangular microchannels
,”
J. Micromech. Microeng.
16
,
1024
1032
(
2006
).
13.
J. C.
Lötters
,
W.
Olthuis
,
P. H.
Veltink
, and
P.
Bergveld
, “
The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications
,”
J. Micromech. Microeng
.
7
,
145
147
(
1997
).
14.
V.
Studer
,
G.
Hang
,
A.
Pandolfi
,
M.
Ortiz
,
W.
French Anderson
, and
S. R.
Quake
, “
Scaling properties of a low-actuation pressure microfluidic valve
,”
J. Appl. Phys.
95
,
393
398
(
2004
).
15.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Fabrication of microfluidic systems in poly (dimethylsiloxane)
,”
Electrophoresis
21
,
27
40
(
2000
).
16.
S.
Bhattacharya
,
A.
Datta
,
J. M.
Berg
, and
S.
Gangopadhyay
, “
Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength
,”
J. Microelectromech. Syst.
14
,
590
597
(
2005
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.