We apply the method of Lagrange multipliers to the problem of a particle sliding on an arbitrary concave downward surface under the action of gravity to obtain the point where it leaves the surface.

1.
Herbert
Goldstein
,
Charles P.
Poole
, and
John L.
Safko
,
Classical Mechanics
, Pearson New International Edition (
Pearson Higher Ed
,
San Francisco
,
2002
).
2.
Louis N.
Hand
and
Janet D.
Finch
,
Analytical Mechanics
(
Cambridge U.P
.,
Cambridge
,
1998
).
3.
Dieter
Strauch
,
Classical Mechanics. An Introduction
(
Springer International Publishing
,
Berlin
,
2009
).
4.
Tai L.
Chow
,
Classical Mechanics
(
CRC Press Taylor & Francis Group
,
Boca Raton
,
2013
).
5.
Wolfgang
Nolting
,
Theoretical Physics 2, Analytical Mechanics
(
Springer International Publishing
,
Switzerland
,
2016
).
6.
Nivaldo A.
Lemos
,
Analytical Mechanics
(
Cambridge U.P
.,
Cambridge
,
2018
).
7.
F.
González-Cataldo
,
G.
Gutiérrez
, and
J. M.
Yáñez
, “
Sliding down an arbitrary curve in the presence of friction
,”
Am. J. Phys.
85
,
108
114
(
2017
).
8.
L. A.
del Pino
and
S.
Curilef
, “
Comment on ‘Sliding down an arbitrary curve in the presence of friction’ by F. González-Cataldo, G. Gutiérrez, and J. M. Yáñez, Am. J. Phys. 85(2), 108–114 (2017)
,”
Am. J. Phys.
86
,
470
471
(
2018
).
9.
A.
Aghamohammadi
, “
The point of departure of a particle sliding on a curved surface
,”
Eur. J. Phys.
33
,
1111
1117
(
2012
).
10.
Louis
Leithold
,
The Calculus 7
(
HarperCollins College
,
New York
,
1996
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.