We apply the method of Lagrange multipliers to the problem of a particle sliding on an arbitrary concave downward surface under the action of gravity to obtain the point where it leaves the surface.
References
1.
Herbert
Goldstein
, Charles P.
Poole
, and John L.
Safko
, Classical Mechanics
, Pearson New International Edition (Pearson Higher Ed
, San Francisco
, 2002
).2.
Louis N.
Hand
and Janet D.
Finch
, Analytical Mechanics
(Cambridge U.P
., Cambridge
, 1998
).3.
Dieter
Strauch
, Classical Mechanics. An Introduction
(Springer International Publishing
, Berlin
, 2009
).4.
Tai L.
Chow
, Classical Mechanics
(CRC Press Taylor & Francis Group
, Boca Raton
, 2013
).5.
Wolfgang
Nolting
, Theoretical Physics 2, Analytical Mechanics
(Springer International Publishing
, Switzerland
, 2016
).6.
Nivaldo A.
Lemos
, Analytical Mechanics
(Cambridge U.P
., Cambridge
, 2018
).7.
F.
González-Cataldo
, G.
Gutiérrez
, and J. M.
Yáñez
, “Sliding down an arbitrary curve in the presence of friction
,” Am. J. Phys.
85
, 108
–114
(2017
).8.
L. A.
del Pino
and S.
Curilef
, “Comment on ‘Sliding down an arbitrary curve in the presence of friction’ by F. González-Cataldo, G. Gutiérrez, and J. M. Yáñez, Am. J. Phys. 85(2), 108–114 (2017)
,” Am. J. Phys.
86
, 470
–471
(2018
).9.
A.
Aghamohammadi
, “The point of departure of a particle sliding on a curved surface
,” Eur. J. Phys.
33
, 1111
–1117
(2012
).10.
© 2019 American Association of Physics Teachers.
2019
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.