In quantum mechanics, the magnetic field has a physical effect beyond its local presence. For axially symmetric vector potentials, A=A(s,z)ϕ̂, it is the magnetic flux that plays a central role in both interference experiments (as in the Aharonov-Bohm effect) and in bound state spectra for a particle constrained to move in a circle. The flux dependence is evident in various configurations, and we have chosen two applications to highlight the non-local nature of the quantum mechanical magnetic field dependence: A finite solenoid and a Dirac string with a non-zero radius. The finite solenoid is interesting because it represents the actual experimental apparatus for measuring the Aharonov-Bohm effect. The Dirac string provides an electric charge quantization mechanism that depends on where the quantization argument is applied, yielding different fundamental charge units for different locations.

1.
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in the quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
2.
W.
Ehrenberg
and
R. E.
Siday
, “
The refractive index in electron optics and the principles of dynamics
,”
Proc. Phys. Soc. (London)
B62
,
8
21
(
1949
).
3.
R. G.
Chambers
, “
Shift of an electron interference pattern by enclosed magnetic flux
,”
Phys. Rev. Lett.
5
,
3
5
(
1960
).
4.
Barry R.
Holstein
, “
Variations on the Aharonov-Bohm effect
,”
Am. J. Phys.
59
,
1080
1085
(
1991
).
5.
Herman
Erlischson
, “
Aharonov-Bohm effect—Quantum effects on charged particles in field-free regions
,”
Am. J. Phys.
38
,
162
173
(
1970
).
6.
Timothy H.
Boyer
, “
Misinterpretation of the Aharonov-Bohm effect
,”
Am. J. Phys.
40
,
56
59
(
1972
).
7.
D.
Home
and
S.
Sengupta
, “
A critical re-examination of the Aharonov-Bohm effect
,”
Am. J. Phys.
51
,
942
947
(
1983
).
8.
David J.
Griffiths
and
Darrell F.
Schroeter
,
Introduction to Quantum Mechanics
(
Cambridge U. P.
,
Cambridge
,
2018
).
9.
P. A. M.
Dirac
, “
Quantised singularities in the electromagnetic field
,”
Proc. R. Soc.
133
(
821
),
60
72
(
1931
).
10.
P. A. M.
Dirac
, “
The theory of magnetic poles
,”
Phys. Rev.
74
,
817
830
(
1948
).
11.
Leonard
Susskind
and
Art
Friedman
,
Special Relativity and Classical Field Theory
(
Basic Books
,
New York
,
2017
).
12.
Mark
Kac
, “
Can one hear the shape of a drum?
Am. Math. Mon.
73
(
4, part 2
),
1
23
(
1966
).
13.
Todd S.
Garon
,
Nelia
Mann
, and
Ellen M.
McManis
, “
Re-examining the value of old quantization and the Bohr atom approach
,”
Am. J. Phys.
81
,
92
98
(
2013
).
14.
David J.
Griffiths
,
Introduction to Electrodynamics
(
Cambridge U. P
.,
Cambridge
,
2017
).
15.
E.
Banyas
and
J.
Franklin
, “
The (weak) gravitational field of a dirac monopole
,”
Classical Quantum Gravity
34
,
195004
(
2017
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.