A single-pixel camera is an interesting alternative to modern digital cameras featuring millions of pixels. A single-pixel camera is a method that produces images by exploring the object features with a series of spatially resolved patterns of light field while measuring the correlated intensity on a single detector. Nowadays, single-pixel cameras are used on those applications where multi-pixel detectors are not available because the wavelength is not in visible range or light intensity is extremely low. The spatial light modulator is an essential part of any single-pixel camera systems. They are, unfortunately, very expensive. We describe a low-cost version of single pixel camera that can be used in undergraduate physics laboratories. We show that with this camera setup students can easily demonstrate basic characteristics of computational ghost imaging and traditional raster and basis scan. Finally, we explain how to perform compressive sampling of images where the number of measurements is well below the actual pixel number. Compressive sampling is a rapidly expanding method to perform image or signal reconstructions in many field of research.

1.
P.
Sen
,
B.
Chen
,
G.
Garg
,
S. R.
Marschner
,
M.
Horowitz
,
M.
Levoy
, and
H. P. A.
Lensch
, “
Dual photography
,”
ACM Trans. Graph.
24
,
745
755
(
2005
).
2.
M. P.
Edgar
,
G. M.
Gibson
, and
M. J.
Padgett
, “
Principles and prospects for single-pixel imaging
,”
Nat. Photon.
13
,
13
20
(
2019
).
3.
F.
Rousset
,
N.
Ducros
,
F.
Peyrin
,
G.
Valentini
,
C.
D'Andrea
, and
A.
Farina
, “
Time-resolved multispectral imaging based on an adaptive single-pixel camera
,”
Opt. Express
5
,
10550
10558
(
2018
).
4.
M. P.
Edgar
,
G. M.
Gibson
,
R. W.
Bowman
,
B.
Sun
,
N.
Radwell
,
K. J.
Mitchell
,
S. S.
Welsh
, and
M. J.
Padgett
, “
Simultaneous real-time visible and infrared video with single-pixel detectors
,”
Sci. Rep.
5
,
10669
(
2015
).
5.
Y.
Zhang
,
M. P.
Edgar
,
B.
Sun
,
N.
Radwell
,
G. M.
Gibson
, and
M. J.
Padgett
, “
3D single-pixel video
,”
J. Opt.
18
,
035203
(
2016
).
6.
M. J.
Sun
,
M. P.
Edgar
,
G. M.
Gibson
,
B.
Sun
,
N.
Radwell
,
R.
Lamb
, and
M. J.
Padgett
, “
Single-pixel three-dimensional imaging with time-based depth resolution
,”
Nat. Commun.
7
,
12010
(
2016
).
7.
N.
Radwell
,
K. J.
Mitchell
,
G. M.
Gibson
,
M. P.
Edgar
,
R.
Bowman
, and
M. J.
Padgett
, “
Single-pixel infrared and visible microscope
,”
Optica
1
,
285
289
(
2014
).
8.
P.
Clemente
,
V.
Duran
,
E.
Tajahuerce
,
P.
Andres
,
V.
Climent
, and
J.
Lancis
, “
Compressive holography with a single-pixel detector
,”
Opt. Lett.
38
,
2524
2527
(
2013
).
9.
J.
Greenberg
,
K.
Krishnamurthy
, and
D.
Brady
, “
Compressive single-pixel snapshot x-ray diffraction imaging
,”
Opt. Lett.
39
,
111
114
(
2014
).
10.
Z.
Zhang
,
Z.
Su
,
Q.
Deng
,
J.
Ye
,
J.
Peng
, and
J.
Zhong
, “
Lensless single-pixel imaging by using LCD: application to small-size and multi-functional scanner
,”
Opt. Express
27
,
3731
3745
(
2019
).
11.
R. S.
Bennink
,
S. J.
Betley
, and
R. W.
Boyd
, “
Two-photon coincidence imaging with a classical source
,”
Phys. Rev. Lett.
89
,
113601
(
2002
).
12.
L.
Basano
and
P.
Ottonello
, “
Ghost imaging: Open secrets and puzzles for undergraduates
,”
Am. J. Phys.
75
,
343
351
(
2007
).
13.
J. H.
Shapiro
, “
Computational ghost imaging
,”
Phys. Rev. A
78
, 0
61802
(
2008
).
14.
N.
Ahmed
,
T.
Natarajan
, and
K. R.
Rao
, “
Discrete cosine transform
,”
IEEE Trans. Comp. C
23
,
90
93
(
1974
).
15.
G. K.
Wallace
, “
The JPEG still picture compression standard
,”
Commun. ACM
34
,
30
44
(
1991
).
16.
R. G.
Baraniuk
, “
Compressive sensing
,”
IEEE Signal Process. Mag.
24
,
118
120
(
2007
).
17.
M. F.
Duarte
,
M. A.
Davenport
,
D.
Takhar
,
J. N.
Laska
,
T.
Sun
,
K. F.
Kelly
, and
R. G.
Baranuk
,“
Single-pixel imaging via compressive sampling
,”
IEEE Signal Process. Mag.
25
,
83
91
(
2008
).
18.
O.
Katz
,
Y.
Bromberg
, and
Y.
Silberberg
, “
Compressive ghost imaging
,”
Appl. Phys. Lett.
95
,
131110
(
2009
).
19.
E. J.
Candes
and
T.
Tao
, “
Near-optimal signal recovery from random projections: universal encoding strategies?
,”
IEEE Trans. Inf. Theory
52
,
5406
5425
(
2006
).
20.
E.
Candes
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inform. Theory
52
,
489
509
(
2006
).
21.
D.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
22.
I.
Loris
, “
L1Packv2: A mathematica package for minimizing an li-penalized functional
,”
Comp. Phys. Commun.
179
,
895
902
(
2008
).
23.

Also in image analysis the signal-to-noise ratio is commonly determined as the ratio of the average signal and the standard deviation of the background noise. The signal average was calculated over those pixels where the mask was totally transparent and the background level over those pixels where the mask was opaque.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.