We consider a forced harmonic oscillator in one-dimension. Using coherent states, we show that the treatment of the system is simplified, that the relationship between the classical and quantum solutions becomes transparent, and that the evolution operator of the system can be calculated easily as the free evolution operator of the harmonic oscillator followed by a displacement operator that depends on the classical solution. In addition, we consider the system in the rotating-wave-approximation (RWA), an application of the Averaging Theorem. We determine the relationship between the exact solution and the one in the RWA, test the accuracy of the RWA, and explain why the RWA gives accurate results in the realm of cavity quantum electrodynamics. Finally, we apply the results to a charged particle interacting with an electromagnetic field.

1.
R. P.
Feynman
, “
Mathematical formulation of the quantum theory of electromagnetic interaction
,”
Phys. Rev.
80
(
3
),
440
457
(
1950
).
2.
C. E.
Treanor
, “
Vibrational energy transfer in high energy collisions
,”
J. Chem. Phys.
43
(
2
),
532
538
(
1965
).
3.
J.
Garnier
, “
Asymptotic behavior of the quantum harmonic oscillator driven by a random time-dependent electric field
,”
J. Stat. Phys.
93
(
1/2
),
211
241
(
1998
).
4.
C.
Farina
,
M.
Maneschy
, and
C.
Neves
, “
An alternative approach for the propagator of a charged harmonic oscillator in a magnetic field
,”
Am. J. Phys.
61
,
636
641
(
1993
).
5.
G. W.
Parker
, “
Evolution of the quantum states of a harmonic oscillator in a uniform time varying electric field
,”
Am. J. Phys.
40
(
40
),
120
125
(
1972
).
6.
H. R.
Lewis
and
W. B.
Riesenfeld
, “
An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time dependent electromagnetic field
,”
J. Math. Phys.
10
(
8
),
1458
1473
(
1969
).
7.
R. M.
Lopez
and
S. K.
Suslov
, “
The Cauchy problem for a forced harmonic oscillator
,”
Rev. Mexicana Física E
55
(
2
),
196
215
(
2009
).
8.
M.
Ludwig
,
B.
Kubala
, and
F.
Marquardt
, “
The optomechanical instability in the quantum regime
,”
New J. Phys.
10
,
095013
(
2008
).
9.
A. C.
Doherty
,
T. W.
Lynn
,
C. J.
Hood
, and
H. J.
Kimble
, “
Trapping of single atoms with single photons in cavity QED
,”
Phys. Rev. A
63
,
013401
(
2000
).
10.
J. E.
Reiner
,
H. M.
Wiseman
, and
H.
Mabuchi
, “
Quantum jumps between dressed states: A proposed cavity-QED test using feedback
,”
Phys. Rev. A
67
,
042106
(
2003
).
11.
J.
Piilo
and
S.
Maniscalco
, “
Driven harmonic oscillator as a quantum simulator for open systems
,”
Phys. Rev. A
74
,
032303
(
2006
).
12.
M.
Kolsrud
, “
Exact quantum dynamical solutions for oscillator-like systems
,”
Phys. Rev.
104
(
4
),
1186
1188
(
1956
).
13.
K.
Husimi
, “
Miscellanea in elementary quantum mechanics, II
,”
Prog. Theor. Phys.
9
(
4
),
381
402
(
1953
).
14.
H. C.
Kim
,
M. H.
Lee
,
J. Y.
Ji
, and
J. Kwan
Kim
, “
Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator
,”
Phys. Rev. A
53
(
6
),
3767
3772
(
1996
).
15.
H.
Kanasugi
and
H.
Okada
, “
Systematic treatment of general time-dependent harmonic oscillator in classical and quantum mechanics
,”
Prog. Theor. Phys.
93
(
5
),
949
960
(
1995
).
16.
P.
Carruthers
and
M. M.
Nieto
, “
Coherent states and the forced quantum oscillator
,”
Am. J. Phys.
33
,
537
544
(
1965
).
17.
M.
Bandyopadhyay
and
S.
Dattagupta
, “
Quantum mechanics of rapidly and periodically driven systems
,”
Pramana – J. Phys.
70
(
3
),
381
398
(
2008
).
18.
R.
Akridge
, “
Timedependent perturbation and exact results for the periodically driven quantum harmonic oscillator
,”
Am. J. Phys.
63
(
2
),
141
147
(
1995
).
19.
Y.
Nogami
, “
Test of the adiabatic approximation in quantum mechanics: Forced harmonic oscillator
,”
Am. J. Phys.
59
(
1
),
64
68
(
1991
).
20.
C. F.
Lo
, “
Perturbative treatment of a general driven timedependent oscillator in a time dependent basis
,”
Am. J. Phys.
59
(
3
),
254
258
(
1991
).
21.
C.
Cohen-Tannoudji
,
B.
Diu
,
F.
Laloë
, and
D.
Laloe
,
Quantum Mechanics
(
Wiley
,
France
,
1977
), Vols.
1 and 2
, pp.
559
574
and 1304–1309.
22.
J. R.
Klauder
and
E. C. G.
Sudarshan
,
Fundamentals of Quantum Optics
(
Dover
,
New York
,
2006
).
23.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer
,
New York
,
1983
), pp.
166
168
.
24.
A.
Messiah
,
Quantum Mechanics
(
North Holland
,
Amsterdam
,
1962
), Vol.
II
, pp.
750
755
.
25.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Prentice Hall
,
New Jersey
,
1995
), pp.
323
332
.
26.
H. J.
Carmichael
,
Statistical Methods in Quantum Optics 2
(
Springer
,
Berlin
,
2008
), pp.
376
377
.
27.
L. O.
Castaños
, “
Simple, analytic solutions of the semiclassical Rabi model
,”
Opt. Commun.
430
,
176
188
(
2019
).
28.
D.
Braak
, “
Integrability of the Rabi model
,”
Phys. Rev. Lett.
107
,
100401
(
2011
).
29.
E. A.
Coddington
,
An Introduction to Ordinary Differential Equations
(
Dover
,
New York
,
1989
), pp.
40
41
.
30.
W.
Greiner
and
J.
Reinhardt
,
Field Quantization
(
Springer
,
Berlin
,
1996
), p.
27
.
31.
D. M.
Gilbey
and
F. O.
Goodman
, “
Quantum theory of the forced harmonic oscillator
,”
Am. J. Phys.
34
,
143
152
(
1966
).
32.
C. J.
Foot
,
Atomic Physics
(
Oxford U.P
.,
Oxford
,
2005
), pp.
123
132
and 259–268.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.