This article presents the Zero Range Potential (ZRP) approximation as an alternative to treat quantum scattering problems. The main focus is to provide an undergraduate-level derivation of the ZRP boundary condition that describes the interaction between an electron and a potential, using the spherical-potential-well analytical solutions. The validity of the approximation is discussed qualitatively and quantitatively. Finally, the ZRP approximation is applied to the scattering of an electron by an atom, comparing the results obtained with modern experimental measurements.

1.
D. J.
Griffiths
and
D. F.
Darrel
,
Introduction to Quantum Mechanics
(
Cambridge U.P
.,
Cambridge
,
2018
).
2.
J. J.
Sakurai
and
S. F.
Tuan
,
Modern Quantum Mechanics
, revised edition (
Addison-Wesley, Reading
,
Massachusetts
,
1994
).
3.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Elsevier
,
Oxford
,
2013
), Vol.
3
.
4.
E.
Merzbacher
,
Quantum Mechanics
, 2nd ed. (
J. Wiley
,
New York
,
1970
).
5.
B. H.
Bransden
and
C. J.
Joachain
,
Physics of Atoms and Molecules
(
Pearson Education, Prentice Hall
,
2003
).
6.
N. F
Mott
and
H. S. W.
Massey
,
The Theory of Atomic Collisions
(
Clarendon Press
,
Oxford
,
1949
).
7.
C. J.
Joachain
,
Quantum Collision Theory
(
North-Holland
,
Amsterdam
,
1975
).
8.
H. A.
Bethe
, “
Theory of the effective range in nuclear scattering
,”
Phys. Rev.
76
,
38
50
(
1949
).
9.
T. F.
O'Malley
,
L.
Rosenberg
, and
L.
Spruch
, “
Low-energy scattering of a charged particle by a neutral polarizable system
,”
Phys. Rev.
125
,
1300
1310
(
1962
).
10.
Y. N.
Demkov
and
V. N.
Ostrovskii
,
Zero-Range Potentials and their Applications in Atomic Physics
(
Springer Science & Business Media
,
New York
,
1988
).
11.
G. F.
Drukarev
and
I. Y.
Yurova
, “
Multiple-scattering approach to the vibrational-rotational excitation of molecules by slow electrons
,”
J. Phys. B: At. Mol. Phys.
10
,
3551
3558
(
1977
).
12.
G. F.
Gribakin
, “
Enhancement of positron annihilation on molecules due to vibrational Feshbach resonances
,”
Nucl. Inst. Meth. Phys. Res. B.
192
,
26
39
(
2002
).
13.
L.
Pricoupenko
, “
Pseudopotential in resonant regimes
,”
Phys. Rev. A
73
,
012701
012713
(
2006
).
14.
R.
Szmytkowski
, “
Zero-range potentials for Dirac particles: Scattering and related continuum problems
,”
Phys. Rev. A
76
,
052708
(
2005
).
15.
R.
Szmytkowski
, “
Reply to “Comment on ‘Zero-range potentials for Dirac particles: Scattering and related continuum problems’”
,”
Phys. Rev. A
73
,
026702
026707
(
2006
).
16.
J. M.
Blatt
and
V. F.
Weisskopf
,
Theoretical Nuclear Physics
(
John Weiley & Sons
,
New York
,
1952
).
17.
E.
Fermi
and
L.
Marshall
, “
Interference phenomena of slow neutrons
,”
Phys. Rev.
71
,
666
677
(
1947
).
18.
Z.
Ahmed
, “
Studying the scattering length by varying the depth of the potential well
,”
Am. J. Phys.
78
,
418
421
(
2010
).
19.
G.
Drukarev
, “
The zero-range potential model and its application in atomic and molecular physics
,”
Adv. Quantum Chem.
11
,
251
274
(
1978
).
20.
S. H.
Dong
,
X. W.
Hou
, and
Z. Q.
Ma
, “
Levinson's theorem for the Schrödinger equation in two dimensions
,”
Phys. Rev. A
58
,
2790
2796
(
1998
).
21.
S. H.
Dong
and
Z. Q.
Ma
, “
Levinson's theorem for the Schrödinger equation in one dimension
,”
Int. J. Theo. Phys.
39
,
469
481
(
2000
).
22.
S. H.
Dong
,
X. W.
Hou
, and
Z. Q.
Ma
, “
Nonrelativistic Levinson's theorem in D dimensions
,”
Phys. Rev. A
65
,
042717
042723
(
2002
).
23.
M.
Kurokawa
,
M.
Kitajima
,
K.
Toyoshima
,
T.
Kishino
,
T.
Odagiri
,
H.
Kato
,
M.
Hoshino
,
H.
Tanaka
, and
K.
Ito
, “
High-resolution total-cross-section measurements for electron scattering from Ar, Kr, and Xe employing a threshold-photoelectron source
,”
Phys. Rev. A
84
,
062717
062730
(
2011
).
24.
T.
Ohmura
,
Y.
Hara
, and
T.
Yamanouchi
, “
Low energy electron-hydrogen scattering
,”
Prog. Theor. Phys.
20
,
82
88
(
1958
).
25.
L. B
Madsen
, “
Effective range theory
,”
Am. J. Phys.
70
,
811
814
(
2002
).
26.
T. M.
Miller
and
B.
Bederson
, “
Atomic and molecular polarizabilities-a review of recent advances
,”
Adv. At. Mol. Phys.
13
,
1
55
(
1978
).
27.
E. P.
Seidel
and
F.
Arretche
, “
Rovibrational excitation of rare-gas dimers by electron impact
,”
Phys. Rev. A
98
,
052707
052722
(
2018
).
28.
J.
Vogt
and
S.
Alvarez
, “
van der Waals radii of noble gases
,”
Inorg. Chem.
53
,
9260
9266
(
2014
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.