We experimentally demonstrate an avoided crossing by coupling two harmonic oscillators. Each harmonic oscillator consists of a mass connected to a stationary wall by a spring. The two harmonic oscillators are coupled by a spring connecting the two masses. An avoided crossing is experimentally demonstrated in two ways: first, by adjusting the spring constant of one oscillator, and then by separately adjusting the mass of the oscillator. In both cases, the adjusted parameter is held constant for the second oscillator. Additionally, we examine the effects from altering the coupling between the two oscillators. These experimental results are shown to be consistent with theoretical predictions.

1.
John S.
Briggs
and
Alexander
Eisfeld
, “
Quantum dynamics simulation with classical oscillators
,”
Phys. Rev. A
88
,
062104
(
2013
).
2.
K. R.
Brown
,
C.
Ospeikaus
,
Y.
Colombe
,
A. C.
Wilson
,
D.
Leibfreid
, and
D. J.
Wineland
, “
Coupled quantized mechanical oscillators
,”
Nature
471
,
196
199
(
2011
).
3.
Lee E.
Estes
,
Thomas H.
Keil
, and
Lorenzo M.
Narducci
, “
Quantum-mechanical description of two coupled harmonic oscillators
,”
Phys. Rev.
175
,
286
299
(
1968
).
4.
Jan R.
Rubbmark
,
Micheal M.
Kash
,
Micheal G.
Litman
, and
Daniel
Kleppner
, “
Dynamical effects at avoided level crossings: A study of the Landau-Zener effect using Rydberg atoms
,”
Phys. Rev.
23
,
3107
3117
(
1981
).
5.
S.
Flach
,
V.
Fleurov
, and
A. A.
Ovchinnikov
Tunneling of localized excitations: Giant enhancement due to fluctuations
,”
Phys. Rev. B
63
,
094304
(
2001
).
6.
T.
Timberlake
and
L. E.
Reichl
, “
Changes in Floquet-state structure at avoided crossings: Delocalization and harmonic generation
,”
Phys. Rev. A
59
,
2886
2893
(
1999
).
7.
A.
Diaz-de-Anda
,
K.
Volke-Sepúlveda
,
J.
Flores
,
C.
Sánchez-Pérez
, and
L.
Gutiérrez
, “
Study of coupled resonators in analogous wave systems: Mechanical, elastic, and optical
,”
Am. J. Phys.
83
,
1012
1018
(
2015
).
8.
Thomas
Faust
,
Johannes
Rieger
,
Mazimilan J.
Seitner
,
Peter
Krenn
,
Jörg P.
Kotthous
, and
Eva M.
Weig
, “
Non-adiabatic dynamics of two strongly coupled nanomechanical resonator modes
,”
Phys. Rev. Lett.
109
,
037205
037209
(
2012
).
9.
William
Newman
,
Alexandria
Skinner
, and
Shawn A.
Hilbert
, “
An acoustic demonstration of an avoided crossing
,”
Am. J. Phys.
85
,
844
849
(
2017
).
10.
Luka
Novotny
, “
Strong coupling, energy splitting, and level crossings: A classical perspective
,”
Am. J. Phys.
78
,
1199
1202
(
2010
).
11.
Martin
Frimmer
and
Luka
Novotny
, “
The classical Bloch equations
,”
Am. J. Phys.
82
,
947
954
(
2014
).
12.
13.
Grant R.
Fowles
and
George L.
Cassiday
,
Analytical Mechanics
, 7th ed. (
Thomson Brooks
/
Cole, Belmont, CA
,
2005
), p.
99
.
14.
Thomas
Moore
,
Six Ideas that Shaped Physics
(
McGraw-Hill
,
New York, NY
,
2017
).
15.
Paul A.
Tipler
and
Gene
Mosca
,
Physics for Scientists and Engineers
, 6th ed. (
Freeman
,
New York, NY
,
2008
).
16.
Raymond A.
Serway
and
John W.
Jewett
, Jr.
,
Physics for Scientists and Engineers
, 7th ed. (
Thomson Brooks
/
Cole, Belmont, CA
,
2008
).
17.
John R.
Taylor
,
Classical Mechanics
(
University Science books
,
Sausalito, CA
,
2005
).
18.
Stephen T.
Thorton
and
Jerry B.
Marion
,
Classical Dynamics of Particles
, 5th ed. (
Thomson Brooks
/
Cole, Belmont, CA
,
2004
).
19.
Claude
Cohen-Tannoudji
,
Bernard
Diu
, and
Franck
Laloë
,
Quantum Mechanics
(
Hermann
,
Paris
,
1977
), pp.
1156
1161
.
20.
Marissa
D'Onofrio
,
Mitchell
Crum
,
Shawn A.
Hilbert
,
Herman
Batelaan
,
Timothy
Canalichio
, and
Tyler
Bull
, “
An acoustic analog for a quantum mechanical level-splitting route to band formation
,”
Am. J. Phys.
84
,
841
847
(
2016
).
21.
Y.
Kaluzny
,
P.
Goy
,
M.
Gross
,
J. M.
Raimond
, and
S.
Haroche
, “
Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance
,”
Phys. Rev. Lett.
51
,
1175
1178
(
1983
).
22.
R.
Binder
,
S. W.
Koch
,
M.
Lindberg
, and
N.
Peyghambarian
, “
Ultrafast adiabatic following in semiconductors
,”
Phys. Rev. Lett.
65
,
899
902
(
1990
).
23.
T. H.
Stievater
,
Xiaoquin
Li
,
D. G.
Steel
,
D.
Gammon
,
D. S.
Katzer
,
D.
Park
,
C.
Piermarocci
, and
L. J.
Sham
, “
Rabi oscillations of excitons in single quantum dots
,”
Phys. Rev. Lett.
87
,
133603
(
2001
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.