We point out that current textbooks of modern physics are a century out-of-date in their treatment of blackbody radiation within classical physics. Relativistic classical electrodynamics including classical electromagnetic zero-point radiation gives the Planck spectrum with zero-point radiation as the blackbody radiation spectrum. In contrast, nonrelativistic mechanics cannot support the idea of zero-point energy; therefore, if nonrelativistic classical statistical mechanics or nonrelativistic mechanical scatterers are invoked for radiation equilibrium, one arrives at only the low-frequency Rayleigh-Jeans part of the spectrum, which involves no zero-point energy, and does not include the high-frequency part of the spectrum involving relativistically invariant classical zero-point radiation. Here, we first discuss the correct understanding of blackbody radiation within relativistic classical physics, and then we review the historical treatment. Finally, we point out how the presence of Lorentz-invariant classical zero-point radiation and the use of relativistic particle interactions transform the previous historical arguments, so as now to give the Planck spectrum including classical zero-point radiation. Within relativistic classical electromagnetic theory, Planck's constant appears as the scale of source-free zero-point radiation.

1.
See, for example,
R.
Eisberg
and
R.
Resnick
,
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
, 2nd ed. (
Wiley
,
New York
,
1985
);
K. S.
Krane
,
Modern Physics
, 2nd ed. (
Wiley
,
New York
,
1996
);
J. R.
Taylor
,
C. D.
Zafiratos
, and
M. A.
Dubson
,
Modern Physics for Scientists and Engineers
, 2nd ed. (
Pearson
,
New York
,
2003
);
S. T.
Thornton
and
A.
Rex
,
Modern Physics for Scientists and Engineers
, 4th ed. (
Brooks/Cole
,
Cengage Learning, Boston, MA
,
2013
).
2.
H. B. G.
Casimir
, “
On the attraction between two perfectly conducting plates
,”
Proc. K. Ned. Akad. Wet.
51
,
793
795
(
1948
).
3.
S. K.
Lamoreaux
, “
Resource letter CF-1: Casimir force
,”
Am. J. Phys.
67
,
850
861
(
1999
).
4.
T. H.
Boyer
, “
Van der Waals forces and zero-point energy for dielectric and permeable materials
,”
Phys. Rev. A
9
,
2078
2084
(
1974
).
5.
M. J.
Sparnaay
, “
Measurement of the attractive forces between flat plates
,”
Physica
24
,
751
764
(
1958
);
S. K.
Lamoreaux
, “
Demonstration of the Casimir force in the 0.6 to 6μm range
,”
Phys. Rev. Lett.
78
,
5
8
(
1997
);
S. K.
Lamoreaux
, “
Demonstration of the Casimir force in the 0.6 to 6μm range
,”
Phys. Rev. Lett.
81
,
5475
5478
(
1998
);
U.
Mohideen
, “
Precision measurement of the Casimir force from 0.1 to 0.9μm
,”
Phys. Rev. Lett.
81
,
4549
4552
(
1998
);
H. B.
Chan
,
V. A.
Aksyuk
,
R. N.
Kleiman
,
D. J.
Bishop
, and
F.
Capasso
, “
Quantum mechanical actuation of microelectromechanical systems by the Casimir force
,”
Science
291
,
1941
1944
(
2001
);
[PubMed]
G.
Bressi
,
G.
Carugno
,
R.
Onofrio
, and
G.
Ruoso
, “
Measurement of the Casimir force between parallel metallic surfaces
,”
Phys. Rev. Lett.
88
,
041804
(
2002
).
[PubMed]
6.
We will refer to both and h=2π as “Planck's constant”.
7.
See the discussion by
T. H.
Boyer
, “
The contrasting roles of Planck's constant in classical and quantum theories
,”
Am. J. Phys.
86
,
280
283
(
2018
).
8.
T. W.
Marshall
, “
Statistical electrodynamics
,”
Proc. Cambridge Philos. Soc.
61
,
537
546
(
1965
).
9.
T. H.
Boyer
, “
Derivation of the blackbody radiation spectrum without quantum assumptions
,”
Phys. Rev.
182
,
1374
1383
(
1969
).
10.
T. H.
Boyer
, “
Scaling symmetries of scatterers of classical zero-point radiation
,”
J. Phys. A: Math. Theor.
40
,
9635
9642
(
2007
).
11.
It is noteworthy that within quantum mechanics, there is no thought of consistent σltU1-scaling between mechanical systems and zero-point radiation. Thus, quantum mechanics involves only a σtU1-scaling connecting time and energy, with a completely independent scaling in length.
12.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison-Wesley
,
New York
,
2002
), pp.
452
482
. There is a factor of 2π between the action variables in Goldstein's text and those used here, corresponding to the change from Planck's constant h over to .
13.
M.
Planck
,
The Theory of Heat Radiation
(
Dover Publications
,
New York
,
1959
).
14.
See for example,
B. H.
Lavenda
,
Statistical Physics: A Probabilistic Approach
(
Wiley
,
New York
,
1991
), pp.
67
70
.
15.
T. H.
Boyer
, “
Unfamiliar trajectories for a relativistic particle in a Kepler or Coulomb potential
,”
Am. J. Phys.
75
,
992
997
(
2004
).
16.
S. O.
Rice
, “
Mathematical analysis of random noise
,” in
Selected Papers on Noise and Stochastic Processes
, edited by
N.
Wax
(
Dover
,
New York
,
1954
), pp.
133
294
.
17.
T. H.
Boyer
, “
A connection between the adiabatic hypothesis of old quantum theory and classical electrodynamics with classical electromagnetic zero-point radiation
,”
Phys. Rev. A
18
,
1238
1245
(
1978
).
18.
M.
Born
,
The Mechanics of the Atom
(
Ungar
,
New York
,
1970
), pp.
66
71
.
19.
J. H.
van Vleck
, “
A correspondence principle for absorption
,”
J. Opt. Soc. Am.
9
,
27
30
(
1924
).
20.
An extensive account of the history of blackbody radiation is given by
T. S.
Kuhn
,
Black-Body Theory and the Quantum Discontinuity 1894–1912
(
Oxford U. P.
,
New York
,
1978
).
21.
P. H.
Morse
,
Thermal Physics
(
Benjamin-Cummins
,
Reading, MA
,
1969
), p.
339
.
22.
D. C.
Cole
, “
Reinvestigation of the thermodynamics of blackbody radiation via classical physics
,”
Phys. Rev. A
45
,
8471
8489
(
1992
).
23.
T. H.
Boyer
, “
Thermodynamics of the harmonic oscillator: Wien's displacement law and the Planck spectrum
,”
Am. J. Phys.
71
,
866
870
(
2003
).
24.
C.
Garrod
,
Statistical Mechanics and Thermodynamics
(
Oxford U. P.
,
New York
,
1995
), p.
128
.
25.
T. H.
Boyer
, “
Understanding zero-point energy in the context of classical electromagnetism
,”
Eur. J. Phys.
37
,
055206
(
2016
).
26.
See the appendix of
T. H.
Boyer
, “
Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation
,”
Phys. Rev. D
11
,
790
808
(
1975
).
27.
Quoted from Ref. 20, p.
112
.
28.
H. A.
Lorentz
,
The Theory of Electrons
(
Dover
,
New York
,
1952
), pp.
80
96
.
29.
Quoted from Ref. 20, p.
195
.
30.
A.
Hermann
,
The Genesis of Quantum Theory (1899–1913)
, translated by
C. W.
Nash
(
MIT Press
,
Cambridge, MA
,
1971
), pp.
8
11
.
31.
M. J.
Klein
, “
Planck, entropy, and quanta 1901–1906
,” in
The Natural Philosopher I
(
Blaisdell Publishing Co.
,
New York
,
1963
), pp.
81
108
.
32.
See for example,
D. J.
Griffiths
,
Introduction to Electrodynamics
, 4th ed. (
Pearson
,
New York
,
2013
), Sect. 10.2.1, Eq. (10.26);
L.
Eyges
,
The Classical Electrodynamic Field
(
Cambridge U.P.
,
New York
,
1972
), Eqs. (11.45) and (11.46), p.
186
;
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley & Sons
,
New York
,
1999
), Eq. (6.48), p.
246
;
A.
Zangwill
,
Modern Electrodynamics
(
Cambridge U.P.
,
New York
,
2013
), Eqs. (20.57) and (20.58), pp.
724
725
;
A.
Garg
,
Classical Electromagnetism in a Nutshell
(
Princeton U.P.
,
Princeton, NJ
,
2012
), Eqs. (54.16) and (54.17), p.
204
.
33.
Quoted from
S.
Coleman
,
Classical Electron Theory from a Modern Standpoint
(
RAND Corporation Report
,
Santa Monica, CA
,
1961
), p.
19
;
reprinted in
Electromagnetism: Paths to Research
, edited by
Doris
Teplitz
(
Springer Science
,
New York
,
1982
), Chap. 6, pp.
183
210
.
34.
J. H.
van Vleck
, “
The absorption of radiation by multiply periodic orbits, and its relation to the correspondence principle and the Rayleigh-Jeans law: Part II. Calculation of absorption by multiply periodic orbits
,”
Phys. Rev.
24
,
347
365
(
1924
). See also Ref. 19. Although he published a preliminary report, van Vleck never completed his work because he was sidetracked by the appearance of quantum mechanics.
35.
T. H.
Boyer
, “
Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator
,”
Phys. Rev. D
13
,
2832
2845
(
1976
);
T. H.
Boyer
Statistical equilibrium of nonrelativistic multiply periodic classical systems and random classical electromagnetic radiation
,”
Phys. Rev. A
18
,
1228
1237
(
1978
).
36.
R.
Blanco
,
L.
Pesquera
, and
E.
Santos
, “
Equilibrium between radiation and matter for classical relativistic multiperiodic systems. Derivation of Maxwell-Boltzmann distribution from Rayleigh-Jeans spectrum
,”
Phys. Rev. D
27
,
1254
1287
(
1983
);
R.
Blanco
,
L.
Pesquera
, and
E.
Santos
Equilibrium between radiation and matter for classical relativistic multiperiodic systems. II. Study of radiative equilibrium with Rayleigh-Jeans radiation
,”
Phys. Rev. D
29
,
2240
2254
(
1984
).
37.
A.
Einstein
, “
Zur gegenwärtigen Stand des Strahlungsproblems
,”
Phys. Z.
10
,
185
193
(
1909
).
38.
See
H. A.
Lorentz
,
Les Théories Statistiques en Thermodynamique
(
B. B. Teubner Verlag
,
Leipzig
,
1916
), p.
114
.
Also,
S.
Tomonaga
,
Quantum Mechanics
(
North-Holland Publishing Co.
,
Amsterdam
,
1962
), p.
298
.
39.
T. H.
Boyer
, “
Classical statistical thermodynamics and electromagnetic zero-point radiation
,”
Phys. Rev.
186
,
1304
1318
(
1969
).
40.
A.
Einstein
and
L.
Hopf
, “
Statistische untersuchung der bewegung eines resonators in einem strahlungsfeld
,”
Ann. Phys.
33
,
1105
1115
(
1910
).
41.
A.
Einstein
and
O.
Stern
, “
Einigen argumente für die annahme einer molekularen agitation beim absoluten nullpunkt
,”
Ann. Phys.
40
,
551
560
(
1913
).
42.
See Ref. 20, p. 319, Note 29. Kuhn mentions this Einstein-Stern calculation only in his notes to his text. Kuhn includes Einstein and Stern's closing remark; at the end of their successful calculation of Planck's spectrum, they comment, “It seems doubtful that the other difficulties will be overcome without the hypothesis of quanta”.
43.
T. W.
Marshall
, “
Brownian motion of a mirror
,”
Phys. Rev. D
24
,
1509
1515
(
1981
).
44.
See for example, Griffiths' text in Ref. 32, p.
272
.
45.
T. W.
Marshall
, “
Random electrodynamics
,”
Proc. R. Soc., A
276
,
475
491
(
1963
).
46.
T. H.
Boyer
, “
Diamagnetism of a free particle in classical electron theory with classical electromagnetic zero-point radiation
,”
Phys. Rev. A
21
,
66
72
(
1980
);
T. H.
Boyer
Derivation of the Planck radiation spectrum as an interpolation formula in classical electrodynamics with classical electromagnetic zero-point radiation
,”
Phys. Rev. D
27
,
2906
2911
(
1983
);
T. H.
Boyer
, “
Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism
,”
Eur. J. Phys.
37
,
065102
(
2016
).
47.
T. H.
Boyer
, “
Derivation of the Planck spectrum for relativistic classical scalar radiation from thermal equilibrium in an accelerating frame
,”
Phys. Rev. D
81
,
105024(10)
(
2010
);
T. H.
Boyer
Classical physics of thermal scalar radiation in two spacetime dimensions
,”
Am. J. Phys.
79
,
644
656
(
2011
);
The blackbody radiation spectrum follows from zero-point radiation and the structure of relativistic spacetime in classical physics
,”
Found. Phys.
42
,
595
614
(
2012
).
48.
A recent brief review is given by
T. H.
Boyer
, “
Any classical description of nature requires classical electromagnetic zero-point radiation
,”
Am. J. Phys.
79
,
1163
1167
(
2011
).
See also,
D. C.
Cole
and
Y.
Zou
, “
Quantum mechanical ground state of hydrogen obtained from classical electrodynamics
,”
Phys. Lett. A
317
,
14
20
(
2003
).
A review of the work on classical electromagnetic zero-point radiation up to 1996 is provided by
L.
de la Pena
and
A. M.
Cetto
,
The Quantum Dice—An Introduction to Stochastic Electrodynamics
(
Kluwer Academic
,
Dordrecht
,
1996
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.