This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these “brane world” models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

1.
O.
Klein
, “
The atomicity of electricity as a quantum theory law
,”
Nature
118
,
516
517
(
1926
).
2.
B.
Zwiebach
,
A First Course in String Theory
, 2nd ed. (
Cambridge U.P.
,
Cambridge
,
2009
).
3.
N.
Arkani-Hamed
,
S.
Dimopoulos
, and
G.
Dvali
, “
The Hierarchy problem and new dimensions at a millimeter
,”
Phys. Lett. B
429
,
263
272
(
1998
).
4.
I.
Antoniadis
,
N.
Arkani-Hamed
,
S.
Dimopoulos
, and
G.
Dvali
, “
New dimensions at a millimeter to a fermi and superstrings at a TeV
,”
Phys. Lett. B
436
,
257
263
(
1998
).
5.
L.
Randall
and
R.
Sundrum
,
“Large mass hierarchy from a small extra dimension”
,
Phys. Rev. Lett.
83
,
3370
3373
(
1999
).
6.
L.
Randall
and
R.
Sundrum
, “
An alternative to compactification
,”
Phys. Rev. Lett.
83
,
4690
4693
(
1999
).
7.
G.
Dvali
,
G.
Gabadadze
, and
M.
Porrati
, “
4D gravity on a brane in 5D Minkowski space
,”
Phys. Lett. B
485
,
208
214
(
2000
).
8.
L.
Randall
,
Warped Passages
(
Harper Perennial
,
New York, NY
,
2006
).
9.
K.
Thorne
,
The Science of Interstellar
(
W.W. Norton
,
New York, NY
,
2014
).
10.
L. M.
Krauss
,
Hiding in the Mirror
(
Penguin
,
Toronto
,
2006
).
11.
J.
Hewett
and
M.
Spiropulu
, “
Particle physics probes of extra spacetime dimensions
,”
Annu. Rev. Nucl. Part. Sci.
52
,
397
424
(
2002
).
12.
K. A.
Olive
et al, “
The review of particle physics
,”
Chin. Phys., C
38
,
090001
(
2014
);
see “extra dimensions” by
J.
Parsons
and
A.
Pomarol
.
13.
Claudia
de Rham
, “
Massive gravity
,”
Living reviews in relativity
,
17
,
7
(
2014
).
14.
R.
Sundrum
, “
To the fifth dimension and back
,”
TASI 2004 Lectures
, eprint arXiv:hep-th/0508134.
15.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
Feynman Lectures on Physics
(
Basic Books
,
New York, NY
,
2011
).
16.
D.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice Hall
,
New Jersey
, 1999).
17.
See supplementary material at https://doi.org/10.1119/1.5024221 E-AJPIAS-86-003804 for Appendices. Appendix A is a primer on differential geometry needed for this paper; Appendix B on the normalization of the Kaluza-Klein modes of the RS2 model; and Appendix C contains problems based on the material of this paper.
18.
S.
Perlmutter
, “
Measuring the acceleration of the cosmic expansion using supernovae
,”
Rev. Mod. Phys.
84
,
1127
1149
(
2012
);
A. G.
Riess
, “
My path to the accelerating Universe
,”
Rev. Mod. Phys.
84
,
1165
1175
(
2012
);
B. P.
Schmidt
, “
Accelerating expansion of the Universe through observations of distant supernovae
,”
Rev. Mod. Phys
.
84
,
1151
1163
(
2012
).
19.
S.
Dimopoulos
,
S. A.
Raby
, and
F.
Wilczek
, “
Unification of couplings
,”
Phys. Today
44
(
10
),
25
33
;
F.
Wilczek
, “
Theory Vision, LHCP 2016
,” eprint arXiv:1609.06941.
20.
E. G.
Adelberger
et al, “
Torsion balance experiments: A low-energy frontier of particle physics
,”
Prog. Part. Nucl. Phys.
62
,
102
134
(
2009
).
21.
W.-H.
Tan
et al, “
New test of the gravitational inverse-square law at the submillimeter range with dual modulation and compensation
,”
Phys. Rev. Lett.
116
,
131101
(
2016
);
[PubMed]
D. J.
Kapner
et al, “
Tests of the gravitational inverse-square law below the dark energy length scale
,”
Phys. Rev. Lett.
98
,
021101
(
2007
).
[PubMed]
22.
ATLAS Collaboration
, “
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s = 13 TeV using the ATLAS detector
,”
Phys. Rev. D
94
,
032005
(
2016
);
J.
Kretzschmar
, “
Searches for extra dimensions with the ATLAS and CMS detectors
,”
Nucl. Part. Phys. Proc.
541
,
273
275
(
2016
).
23.
S.
Hannestad
and
G.
Raffelt
,
“Supernova and neutron-star limits on large extra dimensions reexamined”
,
Phys. Rev. D
67
,
125008
(
2003
);
S.
Hannestad
and
G.
Raffelt
,
Phys. Rev. D
69
,
029901
(
2004
).
24.
M.
Ajello
et al, “
Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT
,”
JCAP
2
,
12
(
2012
).
25.
L.
Lombriser
,
W.
Hu
,
W.
Fang
, and
U.
Seljak
, “
Cosmological constraints on DGP Braneworld gravity with brane tension
,”
Phys. Rev. D
80
,
063536
(
2009
).
26.
S.
Sachdev
, “
What can gauge-gravity duality teach us about condensed matter physics?
,”
Annu. Rev. Condens. Matter Phys.
3
,
9
33
(
2012
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.