In the rapidly growing area of quantum information, the Deutsch algorithm is ubiquitous and, in most cases, the first one to be introduced to any student of this relatively new field of research. The reason for this historical relevance stems from the fact that, although extremely simple, the algorithm conveys all the main features of more complex quantum computations. In spite of its simplicity, the uncountable experimental realizations of the algorithm in a broad variety of physical systems are in general quite involved. The aim of this work is two-fold: to introduce the basic concepts of quantum computation for readers with just a minimum knowledge of quantum mechanics and to present a novel and entirely accessible implementation of a classical analogue of the quantum Deutsch algorithm. By employing only elementary optical devices, such as lenses and diode lasers, this experimental realization has a striking advantage over all previous implementations: it can easily be understood and reproduced in most basic undergraduate or even high-level school laboratories.

1.
F.
Strauch
, “
Resource letter QI-1: Quantum information
,”
Am. J. Phys.
84
(
7
),
495
507
(
2016
).
2.
W.
Dür
,
R.
Lamprecht
, and
S.
Heusler
, “
Towards a quantum internet
,”
Eur. J. Phys.
38
(
4
),
043001
(
2017
).
3.
A.
Kohnie
and
A.
Rizzoli
, “
Interactive simulations for quantum key distribution
,”
Eur. J. Phys.
38
(
3
),
035403
(
2017
).
4.
V.
Scarani
, “
Quantum computing
,”
Am. J. Phys.
66
(
11
),
956
960
(
1998
).
5.
D.
DiVincenzo
, “
Quantum computing: A short course from theory to experiment
,”
Am. J. Phys.
73
(
8
),
799
800
(
2005
).
6.
E.
Gerjuoy
, “
Shors factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers
,”
Am. J. Phys.
73
(
6
),
521
540
(
2005
).
7.
D.
Deutsch
and
R.
Jozsa
, “
Rapid solution of problems by quantum computation
,”
Proc. R. Soc. Lond. A
439
,
553
558
(
1992
).
8.
V.
Vedral
,
Introduction to Quantum Information Science
(
Oxford U.P.
,
New York
,
2006
), pp.
133
135
.
9.
I.
Chuang
,
L.
Vandersypen
,
X.
Zhou
,
D.
Leung
, and
S.
Lloyd
, “
Experimental realization of a quantum algorithm
,”
Nature
393
,
143
146
(
1998
).
10.
S.
Gulde
,
M.
Riebe
,
G.
Lancaster
,
C.
Becher
,
J.
Eschner
,
H.
Häffner
,
F.
Schmidt-Kaler
,
I.
Chuang
, and
R.
Blatt
, “
Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer
,”
Nature
421
,
48
50
(
2003
).
11.
P.
Bianucci
,
A.
Muller
,
C. K.
Shih
,
Q. Q.
Wang
,
Q. K.
Xue
, and
C.
Piermarocchi
, “
Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot
,”
Phys. Rev. B
69
,
161303(R)
(
2004
).
12.
L.
DiCarlo
,
J.
Chow
,
J.
Gambetta
,
L.
Bishop
,
B.
Johnson
,
D.
Schuster
,
J.
Majer
,
A.
Blais
,
L.
Frunzio
,
S.
Girvin
, and
R.
Schoelkopf
, “
Demonstration of two-qubit algorithms with a superconducting quantum processor
,”
Nature
460
,
240
244
(
2009
).
13.
F.
Shi
,
X.
Rong
,
N.
Xu
,
Y.
Wang
,
J.
Wu
,
B.
Chong
,
X.
Peng
,
J.
Kniepert
,
R.
Schoenfeld
,
W.
Harneit
,
M.
Feng
, and
J.
Du
, “
Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond
,”
Phys. Rev. Lett.
105
,
040504
(
2010
).
14.
P.
Zhang
,
R.
Liu
,
Y.
Huang
,
H.
Gao
, and
F.
Li
, “
Demonstration of Deutsch's algorithm on a stable linear optical quantum computer
,”
Phys. Rev. A
82
,
064302
(
2010
).
15.
H.
Semenenko
and
T.
Byrnes
, “
Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles
,”
Phys. Rev. A
93
,
052302
(
2016
).
16.
N.
Johansson
and
J.
Larsson
, “
Efficient classical simulation of the Deutsch-Jozsa algorithm
,” e-print arXiv:1506.04627v3 [quant-ph].
17.
R.
Spekkens
, “
Evidence for the epistemic view of quantum states: A toy theory
,”
Phys. Rev. A
75
,
032110
(
2007
).
18.
M.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge U.P.
,
UK
,
2000
), pp.
17
36
.
19.
W.
Dür
and
S.
Heusler
, “
Visualization of the invisible: The qubit as key to quantum physics
,”
Phys. Teach.
52
(
8
),
489
492
(
2014
).
20.
W.
Dür
and
S.
Heusler
, “
The qubit as key to quantum physics part II: Physical realizations and applications
,”
Phys. Teach.
54
(
3
),
156
159
(
2016
).
21.
D.
Candela
, “
Undergraduate computational physics projects on quantum computing
,”
Am. J. Phys.
83
(
8
),
688
702
(
2015
).
22.
E.
Galvez
, “
Qubit quantum mechanics with correlated-photon experiments
,”
Am. J. Phys.
78
(
5
),
510
519
(
2010
).
23.
T.
Havel
,
D.
Cory
,
S.
Lloyd
,
N.
Boulant
,
E.
Fortunato
,
M.
Pravia
,
G.
Teklemariam
,
Y.
Weinstein
,
A.
Bhattacharyya
, and
J.
Hou
, “
Quantum information processing by nuclear magnetic resonance spectroscopy
,”
Am. J. Phys.
70
(
3
),
345
362
(
2002
).
24.
J.
Jones
and
M.
Mosca
, “
Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer
,”
J. Chem. Phys.
109
(
5
),
1648
1653
(
1998
).
25.
A.
Oliveira
,
S. P.
Walborn
, and
C. H.
Monken
, “
Implementing the Deutsch algorithm with polarization and transverse spatial modes
,”
J. Opt. B: Quantum Semiclassical Opt.
7
(
9
),
288
292
(
2005
).
26.
B.
Perez-Garcia
,
J.
Francis
,
M.
McLarenc
,
R. I.
Hernandez-Aranda
,
A.
Forbes
, and
T.
Konrad
, “
Quantum computation with classical light: The Deutsch Algorithm
,”
Phys. Lett. A
379
(
28–29
),
1675
1680
(
2015
).
27.
M.
Hor-Meyll
,
D. S.
Tasca
,
S. P.
Walborn
,
P. H.
Souto Ribeiro
,
M. M.
Santos
, and
E. I.
Duzzioni
, “
Deterministic quantum computation with one photonic qubit
,”
Phys. Rev. A
92
,
012337
(
2015
).
28.
D.
Gottesman
, “
The Heisenberg representation of quantum computers
,” e-print arXiv:9807006v1 [quant-ph].
29.
L. K.
Grover
, “
A fast quantum mechanical algorithm for database search
,”
Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(Philadelphia, Pennsylvania, USA,
1996
), pp.
212
219
.
30.
D.
Simon
, “
On the power of quantum computation
,”
SIAM J. Comput.
26
(
5
),
1474
1483
(
1997
).
31.
C. H.
Bennett
,
G.
Brassard
,
C.
Crpeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
, “
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
,”
Phys. Rev. Lett.
70
(
13
),
1895
1899
(
1993
).
32.
C. H.
Bennett
and
S. J.
Wiesner
, “
Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states
,”
Phys. Rev. Lett.
69
(
20
),
2881
2884
(
1992
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.