A pendulum bob has been constructed to experimentally probe the adiabatic transfer in the normal modes of a Wilberforce pendulum. The rotational inertia of the pendulum bob can be changed during its motion in order to follow the gradual transition from a pure translational to a pure rotational oscillation. The reported extension of the conventional use of the Wilberforce pendulum helps understand and demonstrate the concept of normal modes, coupled oscillators, beating, and avoided crossing in undergraduate university classes.

1.
L. R.
Wilberforce
, “
On the vibrations of a loaded spiral spring
,”
Philos. Mag. J. Sci.
38
,
386
392
(
1894
).
2.
A.
Sommerfeld
,
Mechanics of Deformable Bodies: Lectures on Theoretical Physics
(
Academic
,
New York
,
1964
), Vol.
2
.
3.
R.
Geballe
, “
Statics and dynamics of a helical spring
,”
Am. J. Phys.
26
,
287
290
(
1958
).
4.
U.
Köpf
, “
Wilberforce's pendulum revisited
,”
Am. J. Phys.
58
,
833
837
(
1990
).
5.
R. E.
Berg
and
T. S.
Marshall
, “
Wilberforce pendulum oscillations and normal modes
,”
Am. J. Phys.
59
,
32
38
(
1991
).
6.
R. M.
Sutton
,
Demonstration Experiments in Physics
(
McGraw-Hill
,
New York
,
1938
).
7.
M.
Mewes
, “
The slinky wilberforce pendulum: A simple coupled oscillator
,”
Am. J. Phys.
82
,
254
256
(
2014
).
8.
E.
Debowska
,
S.
Jakubowicz
, and
Z.
Mazur
, “
Computer visualization of the beating of a wilberforce pendulum
,”
Eur. J. Phys.
20
,
89
95
(
1999
).
9.
D. E.
Boucher
, “
A visual and acoustic demonstration of beats and interference
,”
Phys. Teach.
37
,
177
178
(
1999
).
10.
G.
Kerschen
,
A. F.
Vakakis
,
Y. S.
Lee
,
D. M.
Mcfarland
,
J. J.
Kowtko
, and
L. A.
Bergman
, “
Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits
,”
Nonlinear Dyn.
42
,
283
303
(
2005
).
11.
D. J.
D'Orazio
,
M. J.
Pearson
,
J. T.
Schultz
,
D.
Sidor
,
M. W.
Best
,
K. M.
Goodfellow
,
R. E.
Scholten
, and
J. D.
White
, “
Measuring the speed of light using beating longitudinal modes in an open-cavity HeNe laser
,”
Am. J. Phys.
78
,
524
528
(
2010
).
12.
H.
Zhan
,
Y.
Gu
, and
H. S.
Park
, “
Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements
,”
Nanoscale
,
4
,
6779
6785
(
2012
).
13.
M.
McDonald
,
J.
Ha
,
B. H.
McGuyer
, and
T.
Zelevinsky
, “
Visible optical beats at the hertz level
,”
Am. J. Phys.
82
,
1003
1005
(
2014
).
14.
T. S.
Wilhelm
,
J.
Orndorff
, and
D. A. V.
Baak
, “
The avoided crossing in the normal-mode frequencies of a wilberforce pendulum
,” <https://www.joshorndorff.com/research>.
15.
R. W.
Claassen
, “
Vibrations of a rectangular cantilever plate
,”
J. Aerospace Sci.
29
,
1300
1305
(
1962
).
16.
M.
Petyt
and
C.
Fleischer
, “
Free vibration of a curved beam
,”
J. Sound Vibr.
18
,
17
30
(
1971
).
17.
P.
Nair
and
S.
Durvasula
, “
On quasi-degeneracies in plate vibration problems
,”
Int. J. Mech. Sci.
15
,
975
986
(
1973
).
18.
J. L.
du Bois
,
S.
Adhikari
, and
N. A.
Lieven
, “
Eigenvalue curve veering in stressed structures: An experimental study
,”
J. Sound Vibr.
322
,
1117
1124
(
2009
).
19.
C. G.
Cooley
and
R. G.
Parker
, “
Eigenvalue sensitivity and veering in gyroscopic systems with application to high-speed planetary gears
,”
Eur. J. Mech. - A/Solids
67
,
123
136
(
2018
).
20.
F. S.
Crawford
, “
Elementary examples of adiabatic invariance
,”
Am. J. Phys.
58
,
337
344
(
1990
).
21.
B. W.
Shore
,
M. V.
Gromovyy
,
L. P.
Yatsenko
, and
V. I.
Romanenko
, “
Simple mechanical analogs of rapid adiabatic passage in atomic physics
,”
Am. J. Phys.
77
,
1183
1194
(
2009
).
22.
L.
Novotny
, “
Strong coupling, energy splitting, and level crossings: A classical perspective
,”
Am. J. Phys.
78
,
1199
1202
(
2010
).
23.
M.
Meissner
and
H.-J.
Schocht
,
Metallfedern: Grundlagen, Werkstoffe, Berechnung, Gestaltung und Rechnereinsatz
(
Springer
,
Berlin, Heidelberg
,
2007
).
24.
F. W.
Sears
, “
A demonstration of the spring-mass correction
,”
Am. J. Phys.
37
,
645
648
(
1969
).
25.
J. G.
Fox
and
J.
Mahanty
, “
The effective mass of an oscillating spring
,”
Am. J. Phys.
38
,
98
100
(
1970
).
26.
T. W.
Edwards
and
R. A.
Hultsch
, “
Mass distribution and frequencies of a vertical spring
,”
Am. J. Phys.
40
,
445
449
(
1972
).
27.
E. E.
Galloni
and
M.
Kohen
, “
Influence of the mass of the spring on its static and dynamic effects
,”
Am. J. Phys.
47
,
1076
1078
(
1979
).
28.
G.
Torzo
and
M.
D'Anna
, “
The Wilberforce Pendulum: A complete analysis through RTL and modelling
,”
Quality Development in Teacher Education and Training
(
Forum
,
Editrice Universitaria Udinese srl
,
2004
), pp.
579
584
.
29.
See Supplementary Material at https://doi.org/10.1119/1.5051179 for a video file that illustrates the adiabatic transfer in the Wilberforce pendulum normal modes. Engineering detail drawings of the experimental setup of all pendulum components together with data acquisition software will be provided upon request.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.