An expression for the intensity of electromagnetic radiation is derived up to the order after the dipole approximation. Our approach is based on the fundamental equations taught in an introductory course in classical electrodynamics, and the derivation is carried out using straightforward mathematical transformations.

1.
J.
Frenkel
,
Allgemeine Mechanik der Elektrizität
(
Springer-Verlag
,
Wien
,
1926
).
2.
J. B.
French
and
Y.
Shimamoto
, “
Theory of multipole radiation
,”
Phys. Rev.
91
(
4
),
898
899
(
1953
).
3.
Kip S.
Thorne
, “
Multipole expansions of gravitational radiation
,”
Rev. Mod. Phys.
52
(
2
),
299
339
(
1980
).
4.
Luc
Blanchet
, “
On the multipole expansion of the gravitational field
,”
Class. Quantum Grav.
15
(
7
),
1971
1999
(
1998
).
5.
Carl A.
Kocher
, “
Point-multipole expansions for charge and current distributions
,”
Am. J. Phys.
46
(
5
),
578
579
(
1978
).
6.
M.
Bezerra
,
W. J. M.
Kort-Kamp
,
M. V.
Cougo-Pinto
, and
C.
Farina
, “
How to introduce the magnetic dipole moment
,”
Eur. J. Phys.
33
(
5
),
1313
1320
(
2012
).
7.
C. G.
Gray
,
G.
Karl
, and
V. A.
Novikov
, “
Magnetic multipolar contact fields: The anapole and related moments
,”
Am. J. Phys.
78
(
9
),
936
948
(
2010
).
8.
John David
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley & Sons, Inc.
,
New York
,
1999
).
9.
David J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice Hall
,
Upper Saddle River, New Jersey
,
1999
).
10.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
, 3rd revised English edition (
Pergamon Press
,
Oxford–New York–Toronto–Sydney–Braunschweig
,
1971
).
11.
C. G.
Gray
, “
Multipole expansions of electromagnetic fields using Debye potentials
,”
Am. J. Phys.
46
(
2
),
169
179
(
1978
).
12.
V. M.
Dubovik
and
L. A.
Tosunyan
, “
Toroidal moments in the physics of electromagnetic and weak interactions
,”
Sov. J. Part. Nucl.
14
(
5
),
504
519
(
1983
).
13.
Rasoul
Alaee
,
Carsten
Rockstuhl
, and
I.
Fernandez-Corbaton
, “
An electromagnetic multipole expansion beyond the long-wavelength approximation
,”
Opt. Commun.
407
,
17
21
(
2018
).
14.
V. M.
Dubovik
and
V. V.
Tugushev
, “
Toroid moments in electrodynamics and solid-state physics
,”
Phys. Rep.
187
(
4
),
145
202
(
1990
).
15.
C.
Vrejoiu
and
R.
Zus
, “
Singular behavior of the multipole electromagnetic field
,”
J. Phys. A
43
(
40
),
405208
(
2010
).
16.
E.
Radescu
, Jr.
and
G.
Vaman
, “
Cartesian multipole expansions and tensorial identities
,”
Prog. Electromagn. Res. B
36
,
89
111
(
2012
).
17.
Ivan
Fernandez-Corbaton
,
Stefan
Nanz
, and
Carsten
Rockstuhl
, “
On the dynamic toroidal multipoles from localized electric current distributions
,”
Sci. Rep.
7
(
1
),
7527
(
2017
).
18.
R. E.
Raab
and
O. L.
de Lange
,
Multipole Theory in Electromagnetism: Classical, Quantum: Symmetry Aspects, with Applications
(
Clarendon Press
,
Oxford
,
2005
), p.
17
.
19.
Ia. B.
Zel'dovich
, “
Electromagnetic interaction with parity violation
,”
J. Exp. Theor. Phys.
6
(
6
),
1184
1186
(
1957
).
20.
N. J.
Carron
, “
On the fields of a torus and the role of the vector potential
,”
Am. J. Phys.
63
(
8
),
717
729
(
1995
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.