An expression for the intensity of electromagnetic radiation is derived up to the order after the dipole approximation. Our approach is based on the fundamental equations taught in an introductory course in classical electrodynamics, and the derivation is carried out using straightforward mathematical transformations.
References
1.
J.
Frenkel
, Allgemeine Mechanik der Elektrizität
(Springer-Verlag
, Wien
, 1926
).2.
J. B.
French
and Y.
Shimamoto
, “Theory of multipole radiation
,” Phys. Rev.
91
(4
), 898
–899
(1953
).3.
Kip S.
Thorne
, “Multipole expansions of gravitational radiation
,” Rev. Mod. Phys.
52
(2
), 299
–339
(1980
).4.
Luc
Blanchet
, “On the multipole expansion of the gravitational field
,” Class. Quantum Grav.
15
(7
), 1971
–1999
(1998
).5.
Carl A.
Kocher
, “Point-multipole expansions for charge and current distributions
,” Am. J. Phys.
46
(5
), 578
–579
(1978
).6.
M.
Bezerra
, W. J. M.
Kort-Kamp
, M. V.
Cougo-Pinto
, and C.
Farina
, “How to introduce the magnetic dipole moment
,” Eur. J. Phys.
33
(5
), 1313
–1320
(2012
).7.
C. G.
Gray
, G.
Karl
, and V. A.
Novikov
, “Magnetic multipolar contact fields: The anapole and related moments
,” Am. J. Phys.
78
(9
), 936
–948
(2010
).8.
John David
Jackson
, Classical Electrodynamics
, 3rd ed. (John Wiley & Sons, Inc.
, New York
, 1999
).9.
David J.
Griffiths
, Introduction to Electrodynamics
, 3rd ed. (Prentice Hall
, Upper Saddle River, New Jersey
, 1999
).10.
L. D.
Landau
and E. M.
Lifshitz
, The Classical Theory of Fields
, 3rd revised English edition (Pergamon Press
, Oxford–New York–Toronto–Sydney–Braunschweig
, 1971
).11.
C. G.
Gray
, “Multipole expansions of electromagnetic fields using Debye potentials
,” Am. J. Phys.
46
(2
), 169
–179
(1978
).12.
V. M.
Dubovik
and L. A.
Tosunyan
, “Toroidal moments in the physics of electromagnetic and weak interactions
,” Sov. J. Part. Nucl.
14
(5
), 504
–519
(1983
).13.
Rasoul
Alaee
, Carsten
Rockstuhl
, and I.
Fernandez-Corbaton
, “An electromagnetic multipole expansion beyond the long-wavelength approximation
,” Opt. Commun.
407
, 17
–21
(2018
).14.
V. M.
Dubovik
and V. V.
Tugushev
, “Toroid moments in electrodynamics and solid-state physics
,” Phys. Rep.
187
(4
), 145
–202
(1990
).15.
C.
Vrejoiu
and R.
Zus
, “Singular behavior of the multipole electromagnetic field
,” J. Phys. A
43
(40
), 405208
(2010
).16.
E.
Radescu
, Jr. and G.
Vaman
, “Cartesian multipole expansions and tensorial identities
,” Prog. Electromagn. Res. B
36
, 89
–111
(2012
).17.
Ivan
Fernandez-Corbaton
, Stefan
Nanz
, and Carsten
Rockstuhl
, “On the dynamic toroidal multipoles from localized electric current distributions
,” Sci. Rep.
7
(1
), 7527
(2017
).18.
R. E.
Raab
and O. L.
de Lange
, Multipole Theory in Electromagnetism: Classical, Quantum: Symmetry Aspects, with Applications
(Clarendon Press
, Oxford
, 2005
), p. 17
.19.
Ia. B.
Zel'dovich
, “Electromagnetic interaction with parity violation
,” J. Exp. Theor. Phys.
6
(6
), 1184
–1186
(1957
).20.
N. J.
Carron
, “On the fields of a torus and the role of the vector potential
,” Am. J. Phys.
63
(8
), 717
–729
(1995
).© 2018 American Association of Physics Teachers.
2018
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.