The Jarzynski equality (JE) is a remarkable statement relating transient irreversible processes to infinite-time free energy differences. Although 20 years old, the JE remains unfamiliar to many; nevertheless, it is a robust and powerful law. We examine two of Einstein's most simple and well-known discoveries, one classical and one quantum, and show how each of these follows from the JE. Our first example is Einstein's relation between the drag and diffusion coefficients of a particle in Brownian motion. In this context, we encounter a paradox in the macroscopic limit of the JE which is fascinating but also warns us against using the JE too freely outside of the microscopic domain. Our second example is the equality of Einstein's B coefficients for absorption and stimulated emission of quanta. Here, resonant light does irreversible work on a sample, and the argument differs from Einstein's equilibrium reasoning using the Planck black-body spectrum. We round out our examples with a brief derivation and discussion of Jarzynski's remarkable equality.

1.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
2.
C.
Jarzynski
, “
Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach
,”
Phys. Rev. E
56
,
5018
5035
(
1997
).
3.
G. E.
Crooks
, “
Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems
,”
J. Stat. Phys.
90
,
1481
1487
(
1998
).
4.
G. E.
Crooks
, “
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
,”
Phys. Rev. E
60
,
2721
2726
(
1999
).
5.
G. E.
Crooks
, “
Path-ensemble averages in systems driven far from equilibrium
,”
Phys. Rev. E
61
,
2361
2366
(
2000
).
6.
D. J.
Evans
and
D. J.
Searles
, “
The fluctuation theorem
,”
Adv. Phys.
51
,
1529
1540
(
2002
).
7.
G.
Hummer
and
A.
Szabo
, “
Free energy reconstruction from nonequilibrium single-molecule pulling experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
3658
3661
(
2001
).
8.
C.
Bustamante
,
J.
Liphardt
, and
F.
Ritort
, “
The nonequilibrium thermodynamics of small systems
,”
Phys. Today
58
(
7
),
43
48
(
2005
).
9.
N. C.
Harris
,
Y.
Song
, and
C.-H.
Kiang
, “
Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski's equality
,”
Phys. Rev. Lett.
99
,
068101-1
4
(
2007
).
10.
C.
Jarzynski
, “
Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale
,”
Annu. Rev. Condens. Matter Phys.
2
,
329
351
(
2011
).
11.
L.
Peliti
,
Statistical Mechanics in a Nutshell
(
Princeton U. P.
,
Princeton
,
2011
).
12.
R. C.
Lua
and
A. Y.
Grosberg
, “
On practical applicability of the Jarzynski relation in statistical mechanics: A pedagogical example
,”
J. Phys. Chem. B
109
,
6805
6811
(
2005
).
13.
H.
Híjar
and
J. M. O.
de Zárate
, “
Jarzynski's equality illustrated by simple examples
,”
Eur. J. Phys.
31
,
1097
1106
(
2010
).
14.
W. L.
Ribeiro
,
G. T.
Landi
, and
F.
Semião
, “
Quantum thermodynamics and work fluctuations with applications to magnetic resonance
,”
Am. J. Phys.
84
,
948
957
(
2016
).
15.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
, 2nd ed. (
Pergamon Press
,
Oxford
,
1969
).
16.
F.
Reif
,
Fundamentals of Statistical and Thermal Physics
(
McGraw-Hill
,
New York
,
1965
).
17.
U. M. B.
Marconi
,
A.
Puglisi
,
L.
Rondoni
, and
A.
Vulpiani
, “
Fluctuation-dissipation: Response theory in statistical physics
,”
Phys. Rep.
461
,
111
196
(
2008
).
18.
L. Y.
Chen
, “
On the Crooks fluctuation theorem and the Jarzynski equality
,”
J. Chem. Phys.
129
,
091101
(
2008
).
19.
G. E.
Crooks
, “
Comment regarding ‘On the Crooks fluctuation theorem and the Jarzynski equality’ and ‘Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics’
,”
J. Chem. Phys.
130
,
107101
(
2009
).
20.
C.
Jarzynski
, “
Rare events and the convergence of exponentially averaged work values
,”
Phys Rev E
73
,
046105-1
10
(
2006
).
21.
R.
Eisberg
and
R.
Resnick
,
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
, 2nd ed. (
Wiley
,
New York
,
1984
).
22.
J. M.
Ziman
,
Elements of Advanced Quantum Theory
(
Cambridge U. P.
,
Cambridge
,
1969
).
23.
D. N.
Page
, “
Generalized Jarzynski equality
,” preprint arXiv:1207.3355v1 (
2012
).
24.
I thank a reviewer for a useful suggestion regarding this point.
25.
This point was raised in conversation by J. Thomas Dickinson.
26.
C. R.
Stroud
and
E. T.
Jaynes
, “
Long-term solutions in semiclassical radiation theory
,”
Phys. Rev. A
1
,
106
121
(
1970
).
27.
P.
Nelson
,
Biological Physics: Energy, Information, Life
(
Freeman
,
New York
,
2008
).
28.
C.
Jarzynski
, personal communication (
2007
).
29.
G. E.
Crooks
and
C.
Jarzynski
, “
Work distribution for the adiabatic compression of a dilute and interacting classical gas
,”
Phys. Rev. E
75
,
021116-1
4
(
2007
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.