A popular demonstration experiment in optics uses a round-bottom flask filled with water to project a circular rainbow on a screen with a hole through which the flask is illuminated. We show how the vessel's wall shifts the first- and second-order bows towards each other and consequently reduces the width of Alexander's dark band. We address the challenge this introduces in observing Alexander's dark band, and explain the importance of a sufficient distance between the flask and the screen. The wall-effect also introduces a splitting of the bows that can easily be misinterpreted.

1.
H. M.
Nussenzveig
, “
The theory of the rainbow
,”
Sci. Am.
236
,
116
127
(
1977
).
2.
J. D.
Walker
, “
Multiple rainbows from single drops of water and other liquids
,”
Am. J. Phys.
44
(
5
),
421
433
(
1976
).
3.
M. V.
Berry
, “
Nature's optics and our understanding of light
,”
Contemp. Phys.
56
(
1
),
2
16
(
2014
).
4.
A.
Haumann
, “
Rainbows in nature: recent advances in observation and theory
,”
Eur. J. Phys.
37
(
6
),
1
30
(
2016
).
5.
G.
Casini
and
A.
Covello
, “
The ‘rainbow’ in the drop
,”
Am. J. Phys.
80
(
11
),
1027
1034
(
2012
).
6.
A. W.
Hendry
, “
A triple rainbow?
,”
Phys. Teach.
41
,
460
463
(
2003
).
7.
R. J.
Whitaker
, “
Physics of the rainbow
,”
Phys. Teach.
12
,
283
286
(
1974
).
8.
T. B.
Greenslade
, Jr.
, “
The rainbow
,”
Phys. Teach.
20
,
463
(
1982
).
9.
A.
Johnson
,
Sunshine
(
Macmillan
,
New York
,
1894
), pp.
52
and
72
.
10.
M.
Minnaert
,
The Nature of Light and Colour in the Open Air
(
Dover
,
New York
,
1954
).
11.
R. A. R.
Tricker
,
Introduction to Meteorological Optics
(
Mills & Boon
,
London
,
1970
).
12.
C. F.
Bohren
,
Clouds in a Glass of Beer: Simple Experiments in Atmospheric Physics
(
Dover Publications, Inc.
,
Mineola, NY
,
1987
).
13.
J. B.
Calvert
, “
The Rainbow
,” accessed 1 October
2016
, <https://mysite.du.edu/∼jcalvert/astro/bow.htm>.
14.
Harvard Natural Sciences Lecture Demonstrations
, “
Florence's Rainbow
,” accessed 1 October
2016
, <http://sciencedemonstrations.fas.harvard.edu/presentations/florences-rainbow>.
15.
University of California
, Berkeley Physics Lecture Demonstrations, “
Rainbow: Refraction of white light by a liquid sphere
,” accessed 1 October
2016
, <http://berkeleyphysicsdemos.net/node/638>.
16.
H.
Hattori
,
H.
Kakui
,
H.
Kurniawan
, and
K.
Kagawa
Liquid refractometry by the rainbow method
,”
Appl. Opt.
37
(
19
),
4123
4129
(
1998
).
17.
F.
Song
,
C.
Xu
, and
S.
Wang
Twin primary rainbows scattering by a liquid-filled capillary
,”
Opt. Commun.
332
,
96
102
(
2014
).
18.
J. A.
Lock
,
J. M.
Jamison
, and
C.-Y.
Lin
, “
Rainbow scattering by a coated sphere
,”
Appl. Opt.
33
(
21
),
4677
4690
(
1994
).
19.
J. A.
Lock
and
P.
Laven
, “
Understanding light scattering by a coated sphere Part 1: Theoretical considerations
,”
J. Opt. Soc. Am. A
29
(
8
),
1489
1497
(
2012
).
20.
Another way to achieve more confined bows with θ ¯ 1 β 42 ° is to increase nw, i.e., to use a liquid which has a higher index of refraction n > 1.33, cf. Ref. 15.
21.
T. T.
Ivanov
and
S. N.
Nikolov
, “
A New way to demonstrate the rainbow
,”
Phys. Teach.
54
,
460
463
(
2016
).
22.
M.
Selmke
, “
Artificial halos
,”
Am. J. Phys.
83
(
9
),
751
760
(
2015
).
23.
J.
Babinet
, “
X. Beiträge zur meteorologischen Optik
,”
Pogg. Ann.
41
,
128
143
(
1837
); available at https://de.wikisource.org/wiki/Annalen_der_Physik#1837.
24.
W. H.
Miller
, “
XVIII. Beobachtungen an überzähligen Regenbogen
,”
Pogg. Ann.
53
,
214
215
(
1841
).
25.
J. D.
Walker
, “
Mysteries of rainbows, notably their rare supernumerary arcs
,”
Sci. Am.
242
(
6
),
174
184
(
1980
).
26.
M.
Vollmer
and
R.
Tammer
, “
Laboratory experiments in atmospheric optics
,”
Opt. Express
37
(
9
),
1557
1568
(
1998
).
27.
K.
Sassen
, “
Angular scattering and rainbow formation in pendant drops
,”
J. Opt. Soc. Am.
69
(
8
),
1083
1089
(
1979
).
28.
J. A.
Adam
, “
The mathematical physics of rainbows and glories
,”
Phys. Rep.
356
,
229
365
(
2002
).
29.
Technical drawing (0187502-GZA-01522-D) from DURAN Group GmbH for Art. No. 21 721 36 04, round bottom diameter = ( 85 ± 1.5 ) mm , wall δ = 1.7 0.8 + 1.1 mm , accessed 1 October
2016
.
30.
University of California
, Berkeley Physics Lecture Demonstrations, “
Primary and secondary bow of a rainbow
,” accessed 1 October
2016
, <http://berkeleyphysicsdemos.net/node/9265>.
31.
M.
Selmke
and
S.
Selmke
, “
Artificial circumzenithal and circumhorizontal arcs
,”
Am. J. Phys.
85
,
575
581
(
2017
).
32.
The transformations n g , n w n g , n w according to Eq. (7) of Ref. 31 should be applied. The exit rays' inclinations towards the horizontal remain unaltered relative to the incident inclination (Ref. 22).
33.
M.
Daimon
and
A.
Masumura
, “
Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region
,”
Appl. Opt.
46
,
3811
3820
(
2007
).
34.

Throughout the article we have used the value nw = 1.33 (Ref. 1), which corresponds to water's refractive index at the red end of the visible spectrum (Ref. 33). Since water's dispersion signifies that red light is refracted less than blue light, we have described the angular positions of the truly minimum deviation angles across colors, and thereby the outer limits of the rainbows discussed.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.