Geometric treatments of both special and general relativity are outlined, suitable for students in the sciences who are seeing these topics for the first time. Both the advantages and disadvantages of such an approach, and its relationship to more traditional approaches, are then discussed.

1.
Edwin F.
Taylor
and
John Archibald
Wheeler
,
Spacetime Physics
(
W. H. Freeman
,
San Francisco
,
1963
).
2.
Edwin F.
Taylor
and
John Archibald
Wheeler
,
Spacetime Physics
, 2nd ed. (
W. H. Freeman
,
New York
,
1992
).
3.
Thomas A.
Moore
,
Six Ideas That Shaped Physics, Unit R: The Laws of Physics are Frame Independent
, 2nd ed. (
McGraw Hill
,
Boston
,
2003
).
4.
Tevian
Dray
,
The Geometry of Special Relativity
(
A K Peters/CRC Press
,
Boca Raton, FL
,
2012
).
5.
Tevian
Dray
, The Geometry of Special Relativity, <http://relativity.geometryof.org/GSR>,
2010–2012
.
6.
Robert M.
Wald
, “
Resource letter TMGR-1: Teaching the mathematics of general relativity
,”
Am. J. Phys.
74
,
471
477
(
2006
).
7.
Tevian
Dray
,
Differential Forms and the Geometry of General Relativity
(
A K Peters/CRC Press
,
Boca Raton, FL
,
2014
).
8.
Tevian
Dray
, The Geometry of Differential Forms, <http://relativity.geometryof.org/GDF>,
2011–2014
.
9.
Tevian
Dray
, The Geometry of General Relativity, <http://relativity.geometryof.org/GGR>,
2011–2014
.
10.
Charles W.
Misner
,
Kip S.
Thorne
, and
John Archibald
Wheeler
,
Gravitation
(
Freeman
,
San Fransisco
,
1973
).
11.
Rainer K.
Sachs
and
Hung-Hsi
Wu
,
General Relativity for Mathematicians
(
Springer
,
New York
,
1977
).
12.
Tevian
Dray
, “
Using differentials to determine the derivatives of trigonometric and exponential functions
,”
College Math. J.
44
,
17
23
(
2013
).
13.
David J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice Hall
,
Upper Saddle River
,
1999
).
14.
Tevian
Dray
, “
Using three-dimensional spacetime diagrams in special relativity
,”
Am. J. Phys.
81
,
593
596
(
2013
).
15.
Tevian
Dray
, Updates to The Geometry of Special Relativity,
2012
; <http://relativity.geometryof.org/GSR/book/updates/3d>.
16.
Bernard
Schutz
,
A First Course in General Relativity
, 2nd ed. (
Cambridge U.P.
,
Cambridge
,
2009
).
17.
Gabriel
Weinreich
,
Geometrical Vectors
(
University of Chicago Press
,
Chicago
,
1998
).
18.
William
Burke
, Div, Grad, Curl are Dead, unpublished proof. <http://people.ucsc.edu/~rmont/papers/Burke_DivGradCurl.pdf>.
19.
Jan A.
Schouten
,
Tensor Analysis for Physicists
(
Clarendon Press
,
Oxford
,
1951
).
20.
Edwin F.
Taylor
and
John Archibald
Wheeler
,
Exploring Black Holes
(
Addison Wesley Longman
,
San Francisco, CA
,
2000
).
21.
James B.
Hartle
,
Gravity
(
Addison Wesley
,
San Francisco, CA
,
2003
).
22.
A.
Karlhede
and
M. A. H.
MacCallum
, “
On determining the isometry group of a Riemannian space
,”
Gen. Rel. Grav.
14
,
673
682
(
1982
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.