Rotating and rolling rigid bodies exemplify a fascinating theorem of topology, jokingly called the “hairy ball” theorem, which demands that any continuous tangent vector field on the sphere has at least one point where the field is zero. We demonstrate via a gedanken experiment how drilling through a rotating ball, thereby converting it into a torus, leads to the elimination of zero-velocity points on the ball surface. Using the same reasoning, zero-velocity points can be removed from the surface of a drilled spinning top. We discuss the location of zero-velocity points on the surfaces of rigid bodies rolling with no slip and with slip. Observations made from different reference frames identify various zero-velocity points. Illustrative experiments visualizing zero-velocity points are presented.

1.
M.
Kline
,
Mathematical Thought from Ancient to Modern
(
Oxford U.P.
,
NY
,
1972
), Vol.
1
, pp.
342
383
.
2.
M.
Nakahara
,
Geometry, Topology and Physics
(
IOP
,
Bristol and Philadelphia
,
2003
), pp.
120
160
.
3.
M.
Eisenberg
and
R.
Guy
, “
A proof of the hairy ball theorem
,”
Am. Math. Mon.
86
(
7
),
571
574
(
1979
).
4.
J.
Milnor
, “
Analytic proofs of the ‘hairy ball theorem' and the Brouwer fixed point theorem
,”
Am. Math. Mon.
85
(
7
),
521
524
(
1978
).
5.
C. A.
Pickover
,
The Mαth βook
(
Sterling
,
NY
,
2009
), pp.
326
327
.
6.
C. D.
Modes
and
M.
Warner
, “
Responsive nematic solid shells: Topology, compatibility and shape
,”
EPL
97
,
36007
(
2012
).
7.
G. A.
DeVries
,
H. Y.
Brunnbauer
,
A. M.
Jackson
,
B.
Long
,
B. T.
Neltner
,
O.
Uzun
,
B. H.
Wunsch
, and
F.
Stellaci
, “
Divalent metal nanoparticles
,”
Science
315
(
5810
),
358
361
(
2007
).
8.
M.
Layer
and
E. M.
Forgan
, “
Magnetic flux lines in type-II superconductors and the ‘hairy ball theorem'
,”
Nat. Commun.
1
,
45
49
(
2010
).
9.
E.
Bormashenko
, “
Surface instabilities and patterning at liquid/vapor interfaces: Exemplifications of the ‘hairy ball theorem'
,”
Colloids Interface Sci. Commun.
5
,
5
7
(
2015
).
10.
H.
Gies
and
S.
Lippoldt
, “
Global surpluses of spin-base invariant fermions
,”
Phys. Lett. B
743
,
415
419
(
2015
).
11.
G.
Gupta
and
A. D.
Rey
, “
Texture rules for concentrated filled nematics
,”
Phys. Rev. Lett.
95
,
127802
(
2005
).
12.
E.
Bormashenko
and
A.
Kazachkov
, “
Geometric optics and the ‘hairy ball theorem'
,”
Results Phys.
6
,
76
77
(
2016
).
13.
E.
Bormashenko
, “
Obstructions imposed by the Poincaré-Brouwer (“hairy ball”) theorem on the propagation of electromagnetic waves
,”
J. Electromagn. Waves Appl.
30
(
8
),
1049
1053
(
2016
).
14.
K.
Mamola
, “
A rotational dynamics demonstration
,”
Phys. Teach.
32
,
216
219
(
1994
).
15.
D. P.
Jackson
,
D.
Mertens
, and
B. J.
Pearson
, “
Hurricane balls: A rigid-body-motion project for undergraduates
,”
Am. J. Phys.
83
,
959
960
(
2015
).
16.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(
Cambridge U.P.
,
Cambridge, UK
,
1960
), pp.
4
5
.
17.
D.
Hilbert
and
S.
Cohn-Vossen
, “
Topology
,”
Geometry and the Imagination
(
AMS Chelsea Publishing
,
USA
,
1990
), Chap. 6, pp.
290
330
.
18.
B. H.
Arnold
,
Intuitive Concepts in Elementary Topology
(
Dover Books on Mathematics
,
Mineola, NY, USA, 2011
, originally published: Prentice Hall Inc, Englewood 464 Cliffs, NJ, USA,
1962
), pp.
57
63
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.