Optical materials with a distribution of loss and gain can be used to manipulate waves in fascinating ways, seemingly impossible with ordinary lossless materials. Some recent results have shown that (for planar media) if the spatial distributions of the real and imaginary parts of the permittivity are related to one another by the Kramers-Kronig relations, then reflection can be eliminated. Moreover, if an additional “cancellation condition” is satisfied, then a material can be made invisible for incidence from one side. Here, we give a simple demonstration of these results that should be accessible to undergraduates. In addition, we show how this simple method can be used to prove results about the reflection from permittivity profiles, without ever requiring an exact solution of the Helmholtz equation.

1.
J.
Lekner
,
Theory of Reflection of Electromagnetic and Particle Waves
(
Kluwer
,
Dordrecht
,
1987
).
2.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics
(
Butterworth-Heinemann
,
Oxford
,
2003
).
3.
J.
Lekner
, “
Reflectionless eigenstates of the sech2 potential
,”
Am. J. Phys.
75
,
1151
1157
(
2007
).
4.
I.
Kay
and
H. E.
Moses
, “
Reflectionless transmission through dielectrics and scattering potentials
,”
J. Appl. Phys.
27
,
1503
1508
(
1956
).
5.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
, “
Controlling electromagnetic fields
,”
Science
312
,
1780
1782
(
2006
).
6.
U.
Leonhardt
, “
Optical conformal mapping
,”
Science
312
,
1777
1780
(
2006
).
7.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
, “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
,
977
980
(
2006
).
8.
U.
Leonhardt
and
T. G.
Philbin
, “
Transformation optics and the geometry of light
,”
Prog. Opt.
53
,
69
152
(
2009
).
9.
H.
Chen
,
C. T.
Chan
, and
P.
Sheng
, “
Transformation optics and metamaterials
,”
Nat. Mater.
9
,
387
396
(
2010
).
10.
M.-A.
Miri
,
M.
Heinrich
, and
D. N.
Christodoulides
, “
SUSY-inspired one-dimensional transformation optics
,”
Optica
1
,
89
95
(
2014
).
11.
S.
Longhi
, “
Supersymmetric transparent optical intersections
,”
Opt. Lett.
40
,
463
466
(
2015
).
12.
Z.
Lin
,
H.
Ramezani
,
T.
Eichelkraut
,
T.
Kottos
,
H.
Cao
, and
D. N.
Christodoulides
, “
Unidirectional Invisibility Induced by P T -Symmetric Periodic Structures
,”
Phys. Rev. Lett.
106
,
213901
(
2011
).
13.
S.
Longhi
, “
Invisibility in P T -symmetric complex crystals
,”
J. Phys. A
44
,
485302
(
2011
).
14.
L.
Feng
,
Y.-L.
Xu
,
W. S.
Fegadolli
,
M.-H.
Lu
,
J. E. B.
Oliveira
,
V. R.
Almeida
,
Y.-F.
Chen
, and
A.
Scherer
, “
Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies
,”
Nat. Mater.
12
,
108
113
(
2012
).
15.
A.
Mostafazadeh
, “
Transfer matrices as nonunitary S matrices, multimode unidirectional invisibility, and perturbative inverse scattering
,”
Phys. Rev. A
89
,
012709
(
2014
).
16.
S. A. R.
Horsley
,
M.
Artoni
, and
G. C.
La Rocca
, “
Spatial Kramers-Kronig relations and the reflection of waves
,”
Nater Photon
9
,
436
439
(
2015
).
17.
S.
Longhi
, “
Wave reflection in dielectric media obeying spatial Kramers-Kronig relations
,”
Europhys. Lett.
112
,
64001
(
2015
).
18.
S. A. R.
Horsley
,
C. G.
King
, and
T. G.
Philbin
, “
Wave propagation in complex coordinates
,”
J. Opt.
18
,
044016
(
2016
).
19.
S. A. R.
Horsley
, “
The KdV hierarchy in optics
,”
J. Opt.
18
,
085104
(
2016
).
20.
A.
Mostafazadeh
, “
Real description of classical Hamiltonian dynamics generated by a complex potential
,”
Phys. Lett. A
357
,
177
180
(
2006
).
21.
L. D.
Landau
and
E. M.
Lifschitz
,
Statistical Physics
(
Addison Wesley
,
Reading, Mass.
,
1958
), pp.
396
397
.
22.
M.
Sharnoff
, “
Validity conditions for the Kramers–Kronig relations
,”
Am. J. Phys.
32
,
40
44
(
1964
).
23.
B. Y.-K.
Hu
, “
Kramers–Kronig in two lines
,”
Am. J. Phys.
57
,
821
(
1989
).
24.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
New York
,
1975
), pp.
309
312
.
25.
I. V.
Barashenkov
,
D. A.
Zezyulin
, and
V. V.
Konotop
, “
Jamming anomaly in P T -symmetric systems
,”
New J. Phys.
18
,
075015
(
2016
).
26.
S.
Longhi
, “
Bidirectional invisibility in Kramers-Kronig optical media
,”
Opt. Lett.
41
,
3727
3730
(
2016
).
27.
T.-Y.
Wu
and
T.
Ohmura
,
Quantum Theory of Scattering
(
Dover
,
New York
,
2011
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.