When a chain flows up over the edge of a container and then falls to the ground below, it is observed that the top of the chain rises up above the container's edge. This is called a “chain fountain,” and is an entertaining and counterintuitive phenomenon. In this paper, the steady-state motion of the fountain is analyzed experimentally and theoretically. Measurements are given for the speeds and heights for three different chains and three different distances from the container to the floor. It is shown that the distance the chain rises above the container is proportional to the force from the container on the chain. A simple model is developed for how the chain interacts with the container, and shows that a link lifts-off from the container after rotating by a relatively small angle. The model's predictions agree very well with the measurements for the two ball-chains.

1.
A.
Cayley
, “
On a class of dynamical problems
,”
Proc. Roy. Soc. London
8
,
506
511
(
1857
).
2.
J.
Satterly
, “
Falling chains
,”
Am. J. Phys.
19
,
383
384
(
1951
).
3.
G. F.
Hull
, “
Can the impact of a falling chain be measured by a balance?
,”
Am. J. Phys.
20
,
243
244
(
1952
).
4.
M. G.
Calkin
and
R. H.
March
, “
The dynamics of a falling chain. I
,”
Am. J. Phys.
57
,
154
157
(
1989
).
5.
M. G.
Calkin
, “
The dynamics of a falling chain: II
,”
Am. J. Phys.
57
,
157
159
(
1989
).
6.
J.
Vrbik
, “
Chain sliding off a table
,”
Am. J. Phys.
61
,
258
261
(
1993
).
7.
D.
Keiffer
, “
The falling chain and energy loss
,”
Am. J. Phys.
69
,
385
386
(
2001
).
8.
C. W.
Wong
and
K.
Yasui
, “
Falling chains
,”
Am. J. Phys.
74
,
490
496
(
2006
).
9.
W.
Tomaszewski
,
P.
Pieranski
, and
J.-C.
Geminard
, “
The motion of a freely falling chain tip
,”
Am. J. Phys.
74
,
776
783
(
2006
).
10.
J.-C.
Géminard
and
L.
Vanel
, “
The motion of a freely falling chain tip: Force measurements
,”
Am. J. Phys.
76
,
541
545
(
2008
).
11.
E.
Hamm
and
J. C.
Geminard
, “
The weight of a falling chain, revisited
,”
Am. J. Phys.
78
,
828
833
(
2010
).
12.
A.
Grewal
,
P.
Johnson
, and
A.
Ruina
, “
A chain that speeds up, rather than slows, due to collisions: How compression can cause tension
,”
Am. J. Phys.
79
,
723
729
(
2011
);
A.
Grewal
,
P.
Johnson
, and
A.
Ruina
, “
Erratum
,”
Am. J. Phys.
79
,
981–981
(
2011
).
13.
A.
Grewal
,
P.
Johnson
, and
A.
Ruina
, YouTube, “Falling Chain Experiment,” April 20, 2013.
14.
J. A.
Hanna
and
H.
King
, “
An instability in a straightening chain
,” DFD Gallery of Fluid Motion (
2011
).
15.
J. A.
Hanna
and
C. D.
Santangelo
, “
Slack dynamics on an unfurling string
,”
Phys. Rev. Lett.
109
,
134301
(
2012
).
16.
R.
Moreno
,
A.
Page
,
J.
Riera
, and
J. L.
Hueso
, “
Video analysis of sliding chains: A dynamic model based on variable-mass systems
,”
Am. J. Phys.
83
,
500
505
(
2015
).
17.
S.
Mould
, “
Self-siphoning beads
,” <http://stevemould.com/siphoning-beads/> (
2013
), or S. Mould, “Self siphoning beads,” YouTube, Feb. 20, 2013, <https://www.youtube.com/watch?v=_dQJBBklpQQ>.
18.
J. S.
Biggins
and
M.
Warner
, “
Understanding the chain fountain
,”
Proc. R. Soc. A
470
,
20130689
(
2014
).
19.
J. S.
Biggins
, “
Growth and shape of a chain fountain
,”
EPL
106
,
44001-p1
44001-p6
(
2014
).
20.
Y.
Andrew
 et al, “
Non-linear dependence of the height of a chain fountain on drop height
,”
Phys. Educ.
50
,
564
567
(
2015
).
21.
A. J.
Mallinckrodt
, “
Blocks and bullets demo
,”
Phys. Teach.
36
,
198
199
(
1998
).
22.
E. R.
Cowley
,
G. K.
Horton
, and
B. E.
Holton
, “
Another surprise in mechanics
,”
Phys. Teach.
37
,
188
191
(
1999
).
23.
J.
Pantaleone
and
R.
Smith
, “
How a bullet-block experiment explains the chain fountain
,”
Phys. Teach.
(submitted).
24.
S.
Pantaleone
and
J.
Pantaleone
, “
A bullet-block experiment that explains the chain fountain
,” YouTube, June 30, 2016, <
https://
www.youtube.com/watch?v=kp3wLaOQS0I>.
25.
BCM Corp.
, Mount Vernon, NY 10550, www.ballchain.com.
26.
Tracker is a free video analysis and modeling tool for physics education
, available at <physlets.org/tracker/>.
28.
M.
Potter
and
D. C.
Wiggert
,
Schaum's Outline of Fluid Mechanics
(
McGraw-Hill
,
New York
,
2008
), p.
67
.
29.
This quantity is sometimes referred to as pseudowork; see, for example,
A. J.
Mallinckrodt
and
H. S.
Leff
, “
All about work
,”
Am. J. Phys.
60
,
356
365
(
1992
), and references therein.
30.
P. A.
Tipler
and
G.
Mosca
,
Physics for Scientists and Engineers
, 5th ed. (
W.H. Freeman and Co.
,
New York
,
2004
), p.
502
.
31.
The Video Encyclopedia of Physics Demonstrations
, <www.physicsdemos.com/>, Spinning Chain, Demo 05-24 (The Education Group and Associates, Ed. R. Wellner,
1992
).
32.

Neglecting the perturbative correction and making use of Eq. (14) leads to the simplified result habovehbelowD(3L2D)/[2(3L2+D2)] quoted in the enhanced online abstract.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.