From the expression for the electromagnetic field in the neighborhood of a point charge, we determine the rate of electromagnetic momentum flow, calculated using the Maxwell stress tensor, across a surface surrounding the charge. From that we derive for a “point” charge the radiation reaction formula, which turns out to be proportional to the first time-derivative of the acceleration of the charge, identical to the expression for the self-force, hitherto obtained in the literature from the detailed mutual interaction between constituents of a small charged sphere. We then use relativistic transformations to arrive at a generalized formula for radiation reaction for a point charge undergoing relativistic motion.

1.
H. A.
Lorentz
, “
La théorie élecromagnetique de Maxwell et son application aux corps mouvemants
,”
Arch. Néerl. Sci. Exactes Nat.
25
,
363
552
(
1892
).
2.
H. A.
Lorentz
, “
Weiterbildung der Maxwellschen theorie
,”
Encykl. Math. Wiss.
2
,
145
280
(
1904
).
3.
M.
Abraham
,
Theorie der elektrizitat, Vol II: Elektromagnetische theorie der strahlung
(
Teubner
,
Leipzig
,
1905
).
4.
H. A.
Lorentz
,
The Theory of Electron
, 2nd ed. (
Teubner/Dover
,
Leipzig/New York
,
1909/1952
).
5.
M.
Von Laue
, “
Die wellenstrahlung einer bewegten punktladung nach dem relativitätsprinzip
,”
Ann. Phys.
28
,
436
442
(
1909
).
6.
G. A.
Schott
,
Electromagnetic Radiation
(
Cambridge U.P.
,
Cambridge
,
1912
).
7.
L.
Page
and
N. I.
Adams
, Jr.
,
Electrodynamics
(
D. Van Nostrand
,
New York
,
1940
).
8.
A. D.
Yaghjian
,
Relativistic Dynamics of a Charged Sphere
, 2nd ed. (
Springer
,
New York
,
2006
).
9.
F.
Rohrlich
, “
The dynamics of a charged sphere and the electron
,”
Am. J. Phys.
65
,
1051
1056
(
1997
).
10.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
New York
,
1975
).
11.
W. K. H.
Panofsky
and
M.
Phillips
,
Classical Electricity and Magnetism
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1962
).
12.
W.
Heitler
,
The Quantum Theory of Radiation
(
Clarendon
,
Oxford
,
1954
).
13.
D. J.
Griffith
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice
,
Upper Saddle River, NJ
,
1999
).
14.
P. A. M.
Dirac
, “
Classical theory of radiating electrons
,”
Proc. R. Soc. London A
167
,
148
169
(
1938
).
15.
L.
Page
, “
Is a moving mass retarded by the reaction of its own radiation
,”
Phys. Rev.
11
,
376
400
(
1918
).
16.
T.
Fulton
and
F.
Rohrlich
, “
Classical radiation from a uniformly accelerated charge
,”
Ann. Phys.
9
,
499
517
(
1960
).
17.
C.
Teitelboim
, “
Splitting of the Maxwell tensor: Radiation reaction without advanced fields
,”
Phys. Rev. D
1
,
1572
1582
(
1970
).
18.
E.
Comay
, “
Electromagnetic energy-momentum tensor and elementary classical point charges
,”
Int. J. Theor. Phys.
30
,
1473
1487
(
1991
).
19.
J. A.
Heras
and
R. F.
O'Connell
, “
Generalization of the Schott energy in electrodynamic radiation theory
,”
Am. J. Phys.
74
,
150
153
(
2006
).
20.
A. I.
Harte
, “
Self-forces on extended bodies in electrodynamics
,”
Phys. Rev. D
73
,
065006-1
24
(
2006
).
21.
S. E.
Gralla
,
A. I.
Harte
, and
R. M.
Wald
, “
Rigorous derivation of electromagnetic self-force
,”
Phys. Rev. D
80
,
024031-1
22
(
2009
).
22.
R. T.
Hammond
, “
Relativistic particle motion and radiation reaction in electrodynamics
,”
El. J. Theor. Phys.
23
,
221
258
(
2010
).
23.
Ø.
Grøn
, “
The significance of the Schott energy for energy-momentum conservation of a radiating charge obeying the Lorentz–Abraham–Dirac equation
,”
Am. J. Phys.
79
,
115
122
(
2011
).
24.
Ø.
Grøn
, “
Electrodynamics of radiating charges
,”
Adv. Math. Phys.
2012
,
528631
(29 pp.) (
2012
).
25.
A. K.
Singal
, “
A first principles derivation of the electromagnetic fields of a point charge in arbitrary motion
,”
Am. J. Phys.
79
,
1036
1041
(
2011
).
26.
A. K.
Singal
, “
The equivalence principle and an electric charge in a gravitational field
,”
Gen. Relativ. Gravitation
27
,
953
967
(
1995
).
27.
A. K.
Singal
, “
The equivalence principle and an electric charge in a gravitational field II. A uniformly accelerated charge does not radiate
,”
Gen. Relativ. Gravitation
29
,
1371
1390
(
1997
).
28.
T. H.
Boyer
, “
Mass renormalization and radiation damping for a charged particle in uniform circular motion
,”
Am. J. Phys.
40
,
1843
1846
(
1972
).
29.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Reading, MA
,
1964
), Vol.
II
.
30.
A. K.
Singal
, “
Energy-momentum of the self-fields of a moving charge in classical electromagnetism
,”
J. Phys. A
25
,
1605
1620
(
1992
).
31.
A. K.
Singal
, “
Poynting flux in the neighbourhood of a point charge in arbitrary motion and radiative power losses
,”
Eur. J. Phys.
37
,
045210
(
2016
).
32.
R. C.
Tolman
,
Relativity Thermodynamics and Cosmology
(
Clarendon
,
Oxford
,
1934
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.