From the expression for the electromagnetic field in the neighborhood of a point charge, we determine the rate of electromagnetic momentum flow, calculated using the Maxwell stress tensor, across a surface surrounding the charge. From that we derive for a “point” charge the radiation reaction formula, which turns out to be proportional to the first time-derivative of the acceleration of the charge, identical to the expression for the self-force, hitherto obtained in the literature from the detailed mutual interaction between constituents of a small charged sphere. We then use relativistic transformations to arrive at a generalized formula for radiation reaction for a point charge undergoing relativistic motion.
References
1.
H. A.
Lorentz
, “La théorie élecromagnetique de Maxwell et son application aux corps mouvemants
,” Arch. Néerl. Sci. Exactes Nat.
25
, 363
–552
(1892
).2.
H. A.
Lorentz
, “Weiterbildung der Maxwellschen theorie
,” Encykl. Math. Wiss.
2
, 145
–280
(1904
).3.
M.
Abraham
, Theorie der elektrizitat, Vol II: Elektromagnetische theorie der strahlung
(Teubner
, Leipzig
, 1905
).4.
H. A.
Lorentz
, The Theory of Electron
, 2nd ed. (Teubner/Dover
, Leipzig/New York
, 1909/1952
).5.
M.
Von Laue
, “Die wellenstrahlung einer bewegten punktladung nach dem relativitätsprinzip
,” Ann. Phys.
28
, 436
–442
(1909
).6.
7.
8.
A. D.
Yaghjian
, Relativistic Dynamics of a Charged Sphere
, 2nd ed. (Springer
, New York
, 2006
).9.
F.
Rohrlich
, “The dynamics of a charged sphere and the electron
,” Am. J. Phys.
65
, 1051
–1056
(1997
).10.
11.
W. K. H.
Panofsky
and M.
Phillips
, Classical Electricity and Magnetism
, 2nd ed. (Addison-Wesley
, Reading, MA
, 1962
).12.
13.
D. J.
Griffith
, Introduction to Electrodynamics
, 3rd ed. (Prentice
, Upper Saddle River, NJ
, 1999
).14.
P. A. M.
Dirac
, “Classical theory of radiating electrons
,” Proc. R. Soc. London A
167
, 148
–169
(1938
).15.
L.
Page
, “Is a moving mass retarded by the reaction of its own radiation
,” Phys. Rev.
11
, 376
–400
(1918
).16.
T.
Fulton
and F.
Rohrlich
, “Classical radiation from a uniformly accelerated charge
,” Ann. Phys.
9
, 499
–517
(1960
).17.
C.
Teitelboim
, “Splitting of the Maxwell tensor: Radiation reaction without advanced fields
,” Phys. Rev. D
1
, 1572
–1582
(1970
).18.
E.
Comay
, “Electromagnetic energy-momentum tensor and elementary classical point charges
,” Int. J. Theor. Phys.
30
, 1473
–1487
(1991
).19.
J. A.
Heras
and R. F.
O'Connell
, “Generalization of the Schott energy in electrodynamic radiation theory
,” Am. J. Phys.
74
, 150
–153
(2006
).20.
A. I.
Harte
, “Self-forces on extended bodies in electrodynamics
,” Phys. Rev. D
73
, 065006-1
–24
(2006
).21.
S. E.
Gralla
, A. I.
Harte
, and R. M.
Wald
, “Rigorous derivation of electromagnetic self-force
,” Phys. Rev. D
80
, 024031-1
–22
(2009
).22.
R. T.
Hammond
, “Relativistic particle motion and radiation reaction in electrodynamics
,” El. J. Theor. Phys.
23
, 221
–258
(2010
).23.
Ø.
Grøn
, “The significance of the Schott energy for energy-momentum conservation of a radiating charge obeying the Lorentz–Abraham–Dirac equation
,” Am. J. Phys.
79
, 115
–122
(2011
).24.
Ø.
Grøn
, “Electrodynamics of radiating charges
,” Adv. Math. Phys.
2012
, 528631
(29 pp.) (2012
).25.
A. K.
Singal
, “A first principles derivation of the electromagnetic fields of a point charge in arbitrary motion
,” Am. J. Phys.
79
, 1036
–1041
(2011
).26.
A. K.
Singal
, “The equivalence principle and an electric charge in a gravitational field
,” Gen. Relativ. Gravitation
27
, 953
–967
(1995
).27.
A. K.
Singal
, “The equivalence principle and an electric charge in a gravitational field II. A uniformly accelerated charge does not radiate
,” Gen. Relativ. Gravitation
29
, 1371
–1390
(1997
).28.
T. H.
Boyer
, “Mass renormalization and radiation damping for a charged particle in uniform circular motion
,” Am. J. Phys.
40
, 1843
–1846
(1972
).29.
R. P.
Feynman
, R. B.
Leighton
, and M.
Sands
, The Feynman Lectures on Physics
(Addison-Wesley
, Reading, MA
, 1964
), Vol. II
.30.
A. K.
Singal
, “Energy-momentum of the self-fields of a moving charge in classical electromagnetism
,” J. Phys. A
25
, 1605
–1620
(1992
).31.
A. K.
Singal
, “Poynting flux in the neighbourhood of a point charge in arbitrary motion and radiative power losses
,” Eur. J. Phys.
37
, 045210
(2016
).32.
© 2017 American Association of Physics Teachers.
2017
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.