In quantum field theory, the photon-fermion vertex can be described in terms of four form-factors that encode the static electromagnetic properties of the particle, namely, its charge, magnetic dipole moment, electric dipole moment, and anapole moment. For Majorana fermions, only the anapole moment can be nonzero, a consequence of the fact that these particles are their own antiparticles. Using the framework of quantum field theory, we perform a scattering calculation that probes the anapole moment with a spinless charged particle. In the limit of low momentum transfer, we confirm that the anapole can be classically likened to a point-like toroidal solenoid whose magnetic field is confined to the origin. Such a toroidal current distribution can be used to demonstrate the Aharonov-Bohm effect. We find that, in the non-relativistic limit, our scattering cross section agrees with a quantum mechanical computation of the cross section for a spinless current scattered by an infinitesimally thin toroidal solenoid. Our presentation is geared toward advanced undergraduate or beginning graduate students. This work serves as an introduction to the anapole moment and also provides an example of how one can develop an understanding of a particle's electromagnetic properties in quantum field theory.

1.
Boris
Kayser
, “
Majorana neutrinos and their electromagnetic properties
,”
Phys. Rev. D
26
,
1662
1670
(
1982
).
2.
Jose F.
Nieves
, “
Electromagnetic properties of Majorana neutrinos
,”
Phys. Rev. D
26
,
3152
3158
(
1982
).
3.
C. G.
Gray
,
G.
Karl
, and
V. A.
Novikov
, “
Magnetic multipolar contact fields: The anapole and related moments
,”
Am. J. Phys.
78
,
936
948
(
2010
).
4.
Ya. B.
Zel'dovich
, “
Electromagnetic interaction with parity violation
,”
Sov. Phys. JETP
6
,
1184
1186
(
1957
)
Ya. B.
Zel'dovich
, [
Zh. Eksp. Teor. Fiz.
33
,
1531
(
1957
)].
5.
T. D.
Lee
and
C. N.
Yang
, “
Question of parity conservation in weak interactions
,”
Phys. Rev.
104
,
254
258
(
1956
).
6.
C. S.
Wu
,
E.
Ambler
,
R. W.
Hayward
,
D. D.
Hoppes
, and
R. P.
Hudson
, “
Experimental test of parity conservation in beta decay
,”
Phys. Rev.
105
,
1413
1415
(
1957
).
7.
C. S.
Wood
,
S. C.
Bennett
,
D.
Cho
,
B. P.
Masterson
,
J. L.
Roberts
,
C. E.
Tanner
, and
C. E.
Wieman
, “
Measurement of parity nonconservation and an anapole moment in cesium
,”
Science
275
,
1759
1763
(
1997
).
8.
I.
Yu Kobzarev
and
L. B.
Okun
,
Problems of Theoretical Physics
(
Publishing House Nauka
,
Moscow
,
1972
), pp.
219
224
.
9.
J. B.
Albert
 et al, “
Search for Majorana neutrinos with the first two years of EXO-200 data
,”
Nature
510
,
229
234
(
2014
).
10.
Gerard
Jungman
,
Marc
Kamionkowski
, and
Kim
Griest
, “
Supersymmetric dark matter
,”
Phys. Rep.
267
,
195
373
(
1996
).
11.
A.
Liam Fitzpatrick
and
Kathryn M.
Zurek
, “
Dark moments and the DAMA-CoGeNT puzzle
,”
Phys. Rev. D
82
,
075004-1
9
(
2010
).
12.
Chiu
Man Ho
and
Robert J.
Scherrer
, “
Anapole dark matter
,”
Phys. Lett. B
722
,
341
346
(
2013
).
13.
Yu
Gao
,
Chiu
Man Ho
, and
Robert J.
Scherrer
, “
Anapole dark matter at the LHC
,”
Phys. Rev. D
89
,
045006-1
5
(
2014
).
14.
Eugenio
Del Nobile
,
Graciela B.
Gelmini
,
Paolo
Gondolo
, and
Ji-Haeng
Huh
, “
Direct detection of light anapole and magnetic dipole DM
,”
JCAP
1406
,
002-1
002-22
(
2014
).
15.
Marek
Nowakowski
,
E. A.
Paschos
, and
J. M.
Rodriguez
, “
All electromagnetic form-factors
,”
Eur. J. Phys.
26
,
545
560
(
2005
).
16.
Michael E.
Peskin
and
Daniel V.
Schroeder
,
An Introduction to Quantum Field Theory
(
Addison-Wesley
,
Reading
,
1995
).
17.
Palash B.
Pal
, “
Dirac, Majorana, and Weyl fermions
,”
Am. J. Phys.
79
,
485
498
(
2011
).
18.
A.
Denner
,
H.
Eck
,
O.
Hahn
, and
J.
Kublbeck
, “
Compact Feynman rules for Majorana fermions
,”
Phys. Lett. B
291
,
278
280
(
1992
).
19.
A.
Denner
,
H.
Eck
,
O.
Hahn
, and
J.
Kublbeck
, “
Feynman rules for fermion number violating interactions
,”
Nucl. Phys. B
387
,
467
481
(
1992
).
20.
G. N.
Afanasiev
and
V. M.
Dubovik
, “
Some remarkable charge-current configurations
,”
Phys. Part. Nucl.
29
,
366
391
(
1998
).
21.
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in the quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
22.
R. G.
Chambers
, “
Shift of an electron interference pattern by enclosed magnetic flux
,”
Phys. Rev. Lett.
5
,
3
5
(
1960
).
23.
S. M.
Roy
, “
Condition for nonexistence of Aharonov-Bohm effect
,”
Phys. Rev. Lett.
44
,
111
114
(
1980
).
24.
V. L.
Lyuboshitz
and
Y. A.
Smorodinskiǐ
, “
The Aharonov-Bohm effect in a toroidal solenoid
,”
Sov. Phys. JETP
48
,
19
22
(
1978
).
25.
Nobuyuki
Osakabe
,
Tsuyoshi
Matsuda
,
Takeshi
Kawasaki
,
Junji
Endo
,
Akira
Tonomura
,
Shinichiro
Yano
, and
Hiroji
Yamada
, “
Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor
,”
Phys. Rev. A
34
,
815
822
(
1986
).
26.
G. N.
Afanasiev
, “
The scattering of charged particles on the toroidal solenoid
,”
J. Phys. A: Math. Gen.
21
,
2095
2110
(
1988
).
27.
G. N.
Afanasiev
, “
Theoretical description of Tonomura-like experiments (electron scattering on a toroidal solenoid)
,”
Phys. Lett. A
142
,
222
226
(
1989
).
28.
In our definition of the anapole moment, we introduce a minus sign relative to Ref. 3 in order to ensure that a toroidal magnetic field in the ϕ̂ direction yields an anapole moment in the ẑ direction. This choice is consistent with quantum treatments of the anapole moment, cf. Ref. 29.
29.
V. M.
Dubovik
and
A. A.
Cheshkov
, “
Multipole expansion in classical and quantum field theory and radiation
,”
Sov. J. Part. Nucl.
5
,
318
337
(
1975
).
30.
David C.
Latimer
, “
Two-photon interactions with Majorana fermions
,”
Phys. Rev. D
94
,
093010-1
13
(
2016
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.