The rotating saddle not only is an interesting system that is able to trap a ball near its saddle point, but can also intuitively illustrate the operating principles of quadrupole ion traps in modern physics. Unlike the conventional models based on the mass-point approximation, we study the stability of a ball in a rotating-saddle trap using rigid-body dynamics. The stabilization condition of the system is theoretically derived and subsequently verified by experiments. The results are compared with the previous mass-point model, giving large discrepancy as the curvature of the ball is comparable to that of the saddle. We also point out that the spin angular velocity of the ball is analogous to the cyclotron frequency of ions in an external magnetic field utilized in many prevailing ion-trapping schemes.

1.
Wolfgang
Rueckner
, “
Rotating saddle Paul trap
,”
Am. J. Phys.
63
(
2
),
186
187
(
1995
).
2.
R. I.
Thompson
,
T. J.
Harmon
, and
M. G.
Ball
, “
The rotating-saddle trap: A mechanical analogy to RF-electric-quadrupole ion trapping?
,”
Can. J. Phys.
80
(
12
),
1433
1448
(
2002
).
3.
Oene
Bottema
, “
Stability of equilibrium of a heavy particle on a rotating surface
,”
Z. Angew. Math. Phys.
27
(
5
),
663
669
(
1976
).
4.
L. E. J.
Brouwer
, “
Beweging van een materieel punt op den bodem fleener draaiende vaas onder den invloed der zwaartekracht
,”
N. Arch. Wisk
2
,
407
419
(
1918
).
5.
Oleg N.
Kirillov
and
Mark
Levi
, “
Rotating saddle trap as Foucault's pendulum
,”
Am. J. Phys.
84
(
1
),
26
31
(
2016
).
6.
Wolfgang
Paul
, “
Electromagnetic traps for charged and neutral particles
,”
Rev. Mod. Phys.
62
(
3
),
531
540
(
1990
).
7.
Mea
Amoretti
et al, “
Production and detection of cold antihydrogen atoms
,”
Nature
419
(
6906
),
456
459
(
2002
).
8.
Christopher J.
Foot
,
Atomic Physics
(
Oxford U. P.
,
United Kingdom
,
2005
), Vol.
7
.
9.
Guy
Savard
et al, “
A new cooling technique for heavy ions in a Penning trap
,”
Phys. Lett. A
158
(
5
),
247
252
(
1991
).
10.
Gerhard
Rempe
,
Herbert
Walther
, and
Norbert
Klein
, “
Observation of quantum collapse and revival in a one-atom maser
,”
Phys. Rev. Lett.
58
(
4
),
353
356
(
1987
).
11.
Th
Sauter
et al, “
Observation of quantum jumps
,”
Phys. Rev. Lett.
57
(
14
)
1696
1698
(
1986
).
12.
W. M.
Itano
et al, “
Bragg diffraction from crystallized ion plasmas
,”
Science
279
(
5351
),
686
689
(
1998
).
13.
Liv
Hornekær
and
M.
Drewsen
, “
Formation process of large ion Coulomb crystals in linear Paul traps
,”
Phys. Rev. A
66
(
1
),
013412
(
2002
).
14.
Daniel H. E.
Dubin
and
T. M.
O'Neil
, “
Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)
,”
Rev. Mod. Phys.
71
(
1
),
87
172
(
1999
).
15.
Juan I.
Cirac
and
Peter
Zoller
, “
Quantum computations with cold trapped ions
,”
Phys. Rev. Lett.
74
(
20
),
4091
4094
(
1995
).
16.
David
Kielpinski
,
Chris
Monroe
, and
David J.
Wineland
. “
Architecture for a large-scale ion-trap quantum computer
,”
Nature
417
(
6890
),
709
711
(
2002
).
17.
L.-M.
Duan
,
J. I.
Cirac
, and
P.
Zoller
, “
Geometric manipulation of trapped ions for quantum computation
,”
Science
292
(
5522
),
1695
1697
(
2001
).
18.

The general saddle–shaped surface equation should be z = x2/ay2/b where a and b are positive constants. In this article, however, for the sake of simplicity, we consider the special case a = b (symmetric saddle). [This is a loss of generality, so I have removed the statement that it is not.]

19.
Alexey
Vladimirovich Borisov
,
Ivan
Sergeevich Mamaev
, and
A. A.
Kilin
, “
Rolling of a ball on a surface. New integrals and hierarchy of dynamics
,”
Regular Chaotic Dyn
7
(
2
),
201
219
(
2002
).
20.
M. R.
Flannery
, “
The elusive d'Alembert-Lagrange dynamics of nonholonomic systems
,”
Am. J. Phys.
79
(
9
),
932
944
(
2011
).
21.
Herbert
Goldstein
,
Classical Mechanics
(
Pearson Education
India
, India,
1965
).
22.
Dexin
Lu
,
University Physics
(
Springer
,
Germany
,
1999
).
23.
David P.
Jackson
,
David
Mertens
, and
Brett J.
Pearson
, “
Hurricane balls: A rigid-body-motion project for undergraduates
,”
Am. J. Phys.
83
(
11
),
959
968
(
2015
).
24.
Oleg N.
Kirillov
, “
Exceptional and diabolical points in stability questions
,”
Fortschr. Phys.
61
(
2–3
),
205
224
(
2013
).
25.
Taro
Hasegawa
and
John J.
Bollinger
, “
Rotating-radio-frequency ion traps
,”
Phys. Rev. A
72
(
4
),
043403
(
2005
).
26.
V. E.
Shapiro
, “
Rotating class of parametric resonance processes in coupled oscillators
,”
Phys. Lett. A
290
(
5
),
288
296
(
2001
).
27.
Taro
Hasegawa
,
M. J.
Jensen
, and
John J.
Bollinger
, “
Stability of a Penning trap with a quadrupole rotating electric field
,”
Phys. Rev. A
71
(
2
),
023406
(
2005
).
28.
X.-P.
Huang
et al, “
Steady-state confinement of non-neutral plasmas by rotating electric fields
,”
Phys. Rev. Lett.
78
(
5
),
875
878
(
1997
).
29.
X.-P.
Huang
et al, “
Precise control of the global rotation of strongly coupled ion plasmas in a Penning trap
,”
Phys. Plasmas
5
(
5
),
1656
1663
(
1998
).
30.
A very comprehensive introduction on this topic can be determined at https://en.wikipedia.org/wiki/Rotating_magnetic_field.
31.
See supplementary material at http://dx.doi.org/10.1119/1.5005927 E-AJPIAS-85-020711 for the synchronized spinning motion of the ball near the origin.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.