We present an experiment based on a fibered Mach-Zehnder interferometer, with the aim of familiarizing students with fibered optics and interferometry, and of improving their understanding of optical amplification. The laboratory project has two parts. In the first, students modulate the optical path of the interferometer to study the spectra of light sources via Fourier Transform Spectroscopy. In the second, an optical amplifier is placed in one or both arms of the interferometer. The set-up uses monomode, polarization-maintaining fibers that propagate light with a wavelength of 1.5 μm. Here, we describe the set-up and the analysis of the measurements, and we present results from student reports.

1.
Website of the International Year of Light and Light-based Technologies <http://www.light2015.org/Home.html>.
2.
J. N.
Roy
, “
Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations
,”
Opt. Int. J. Light Electron Opt.
120
(
7
),
318
324
(
2009
).
3.
G. P.
Agrawal
,
Optical Fibers
(
John Wiley & Sons, Inc.
,
2011
), pp.
24
78
; available at .
4.
R.
Schreieck
,
M.
Kwakernaak
,
H.
Jackel
,
E.
Gamper
,
E.
Gini
,
W.
Vogt
, and
H.
Melchior
, “
Ultrafast switching dynamics of Mach-Zehnder interferometer switches
,”
IEEE Photon. Tech. Lett.
13
,
603
605
(
2001
).
5.
M. T.
Hill
,
H. J.
Dorren
,
X. J.
Leijtens
,
J. H.
den Besten
,
T.
de Vries
,
J. H.
van Zantvoort
,
E.
Smalbrugge
,
Y. S.
Oei
,
J. J.
Binsma
,
G. D.
Khoe
, and
M. K.
Smit
, “
Coupled Mach-Zehnder interferometer memory element
,”
Opt. Lett.
30
,
1710
1712
(
2005
).
6.
S.
Nakamura
,
Y.
Ueno
,
K.
Tajima
,
J.
Sasaki
,
T.
Sugimoto
,
T.
Kato
,
T.
Shimoda
,
M.
Itoh
,
H.
Hatakeyama
,
T.
Tamanuki
, and
T.
Sasaki
, “
Demultiplexing of 168-gb/s data pulses with a hybrid-integrated symmetric Mach-Zehnder all-optical switch
,”
IEEE Photon. Tech. Lett.
12
,
425
427
(
2000
).
7.
M.
Dulk
,
S.
Fischer
,
M.
Bitter
,
M.
Caraccia
,
W.
Vogt
,
E.
Gini
,
H.
Melchior
,
W.
Hunziker
,
A.
Buxens
,
H.
Poulsen
, and
A.
Clausen
, “
Ultrafast all-optical demultiplexer based on monolithic Mach-Zehnder interferometer with integrated semiconductor optical amplifiers
,”
Opt. Quantum Electron.
33
(
7–10
),
899
906
(
2001
).
8.
R.
Mehra
,
H.
Shahani
, and
A.
Khan
, “
Mach-Zehnder interferometer and its applications
,”
IJCA Proceedings on National Seminar on Recent Advances in Wireless Networks and Communications NWNC
(
2014
), pp.
31
36
.
9.
M.
Zhang
,
Y.
Zhao
,
L.
Wang
,
J.
Wang
, and
P.
Ye
, “
Design and analysis of all-optical XOR gate using soa-based Mach-Zehnder interferometer
,”
Opt. Commun.
223
(
4–6
),
301
308
(
2003
).
10.
In the past, when infrared detector arrays were not commonly accessible, FTS was the preferred method for spectroscopy in astronomy. See
S. T.
Ridgway
and
J. W.
Brault
, “
Astronomical Fourier transform spectroscopy revisited
,”
Ann. Rev. Astron. Astrophys.
22
,
291
317
(
1984
).
11.
R.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Reading, MA
,
1965
), Vol.
3
, chap. 1.
12.
Thorlabs website <http://www.thorlabs.com>.
13.
OZ Optics website <http://www.ozoptics.com>.
14.
P.
Nachman
, “
Mach-Zehnder interferometer as an instructional tool
,”
Am. J. Phys.
63
(
1
),
39
43
(
1995
).
15.
B.
Kanseri
,
N. S.
Bisht
,
H. C.
Kandpal
, and
S.
Rath
, “
Observation of the Fresnel and Arago laws using the Mach-Zehnder interferometer
,”
Am. J. Phys.
76
(
1
),
39
42
(
2008
).
16.
M. B.
Schneider
and
I. A.
LaPuma
, “
A simple experiment for discussion of quantum interference and which-way measurement
,”
Am. J. Phys.
70
(
3
),
266
271
(
2002
).
17.
B. J.
Pearson
and
D. P.
Jackson
, “
A hands-on introduction to single photons and quantum mechanics for undergraduates
,”
Am. J. Phys.
78
(
5
),
471
484
(
2010
).
18.
T. L.
Dimitrova
and
A.
Weis
, “
The wave-particle duality of light: A demonstration experiment
,”
Am. J. Phys.
76
(
2
),
137
142
(
2008
).
19.
M. V.
Andrés
and
O.
Contreras
, “
Experiments on optical fiber interferometers and laser modes
,”
Am. J. Phys.
60
(
6
),
540
545
(
1992
).
20.
D. J.
Fritz
and
D. J.
McLaughlin
, “
Optical path difference measurements with a Michelson interferometer using a frequency modulated continuous wave ranging technique
,”
Am. J. Phys.
61
(
11
),
1028
1031
(
1993
).
21.
M. A.
Illarramendi
,
R.
Hueso
,
J.
Zubia
,
G.
Aldabaldetreku
,
G.
Durana
, and
A.
Snchez-Lavega
, “
A daylight experiment for teaching stellar interferometry
,”
Am. J. Phys.
82
(
7
),
649
653
(
2014
).
22.
Thorlabs website on Polarization-Maintaining Single Mode Optical Fibers <https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1596>.
23.
Thorlabs website on Lithium Niobate Modulators <https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3918>.
24.
Thorlabs website on Custom Fiber Optic Patch Cables <http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2410>.
25.
B. G.
Englert
, “
Fringe visibility and which-way information: An inequality
,”
Phys. Rev. Lett.
77
,
2154
2157
(
1996
).
26.
A.
Danan
,
D.
Farfurnik
,
S.
Bar-Ad
, and
L.
Vaidman
, “
Asking photons where they have been
,”
Phys. Rev. Lett.
111
,
240402
(
2013
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.