Life is dependent on the income of energy with low entropy and the disposal of energy with high entropy. On Earth, the low-entropy energy is provided by solar radiation and the high-entropy energy is disposed of as infrared radiation emitted into cold space. Here, we turn the situation around and imagine the cosmic background radiation as the low-entropy source of energy for a planet orbiting a black hole into which the high-entropy energy is expelled. We estimate the power that can be produced by thermodynamic processes on such a planet, with a particular interest in planets orbiting a fast rotating Kerr black hole as in the science fiction movie Interstellar. We also briefly discuss a reverse Dyson sphere absorbing cosmic background radiation from the outside and dumping waste energy to a black hole inside.

1.
E.
Schrödinger
,
What is Life? The Physical Aspect of the Living Cell
(
Cambridge U.P.
,
Cambridge
,
1944
).
2.

The energy input/output of Earth is the solar constant ∼1.36 kW/m2 multiplied by the disk area of Earth πR2 ≈ 1.28 × 1014 m2, i.e., 1.74 × 1017 J each second; if this is divided by the temperature ∼300 K we obtain the estimate of the entropy production.

3.
K. S.
Thorne
,
The Science of Interstellar
(
Norton
,
New York
,
2014
).
4.
S.
Frautschi
, “
Entropy in an expanding universe
,”
Science
217
(
4560
),
593
599
(
1982
).
5.
L. M.
Krauss
and
G. D.
Starkman
, “
Life, the universe, and nothing: Life and death in an ever-expanding universe
,”
Astrophys. J.
531
(
1
),
22
30
(
2000
).
6.
T.
Opatrný
and
L.
Richterek
, “
Black hole heat engine
,”
Am. J. Phys.
80
(
1
),
66
71
(
2012
).
7.
A.
Loeb
, “
The habitable epoch of the early Universe
,”
Int. J. Astrobiol.
13
(
4
),
337
339
(
2014
).
8.
Z.
Merali
, “
Life possible in the early Universe
,”
Nature
504
(
7479
),
201
(
2013
).
9.

The celestial sphere is an imaginary sphere of arbitrarily large radius concentric with the observer. It is a practical tool in spherical astronomy for projecting objects on the sky. In Fig. 3, we show the Mollweide projection of the celestial sphere with the light (dark) area representing its hot (cold) part, respectively. The Mollweide projection generally used for global maps of the world or night sky is an equal-area, pseudocylindrical map projection preserving the proportions of areas, which is important for our considerations. It represents the central meridian as a straight line segment with other meridians longer and bowed outward away from the central one. This projection maps the sphere into a proportional 2:1 ellipse (the length of the central meridian is a half of the equator length).

10.
S. W.
Hawking
, “
Black holes and thermodynamics
,”
Phys. Rev. D
13
(
2
),
191
197
(
1976
).
11.
S. W.
Hawking
, “
The quantum mechanics of black holes
,”
Sci. Am.
236
,
34
40
(
1977
).
12.
T.
Markvart
, “
The thermodynamics of optical étendue
,”
J. Opt. A: Pure Appl. Opt.
10
,
015008
(
2008
).
13.
R.
Winston
and
J. M.
Gordon
, “
Planar concentrators near the étendue limit
,”
Opt. Lett.
30
(
19
),
2617
2619
(
2005
).
14.
I. I.
Novikov
, “
The efficiency of atomic power stations (a review)
,”
J. Nucl. Energy II
7
(
1–2
),
125
128
(
1958
) [translated from At. Energy 3, 409–412 (1957)].
15.
F. L.
Curzon
and
B.
Ahlborn
, “
Efficiency of a Carnot engine at maximum power output
,”
Am. J. Phys.
43
(
1
),
22
24
(
1975
).
16.
A.
Bejan
, “
Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes
,”
J. Appl. Phys.
79
(
3
),
1191
1218
(
1996
).
17.
M.
Wielgus
,
G. F. R.
Ellis
,
F. H.
Vincent
, and
M. A.
Abramowicz
, “
Cosmic background radiation in the vicinity of a Schwarzschild black hole: No classic firewall
,”
Phys. Rev. D
90
(
12
),
124024
(
2014
).
18.
D.
Raine
and
T.
Edwin
,
Black Holes: An Introduction
(
Imperial College Press
,
London
,
2009
).
19.
J. B.
Hartle
,
Gravity: An Introduction to Einstein's General Relativity
(
Addison Wesley
,
San Francisco
,
2003
).
20.

The rotation parameter a (spin) is defined as a specific intrinsic angular momentum of the Kerr black hole; see, e.g., Hartle, Ref. 19, Sec. 15.2. For a = 0 the Kerr solution becomes the Schwarzschild non-rotating spherically symmetric spacetime [see Eq. (B1)]. The maximum possible value a = 1 corresponds to an extreme Kerr black hole having a rotation velocity of the event horizon equal to the speed of light. The case a > 1 gives a hypothetical naked singularity.

21.
F. J.
Dyson
, “
Search for artificial stellar sources of infrared radiation
,”
Science
131
(
3414
),
1667
1668
(
1960
).
22.

As shown in Ref. 33, the apparent angular size of a Schwarzschild black hole for a distant stationary observer is 2arccos1(27/r2)(12/r), where r is the distance of the black hole center in units of GM/c2. For r ≫ 1 the angular size is the same as that of a sphere of radius 27GM/c2 seen from the same distance.

23.
M. H.
Johnson
and
E.
Teller
, “
Intensity changes in the Doppler effect
,”
Proc. Natl. Acad. Sci. U. S. A.
79
(
4
),
1340
(
1982
).
24.
O.
James
,
E.
von Tunzelmann
,
P.
Franklin
, and
K. S.
Thorne
, “
Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar
,”
Classical Quantum Gravity
32
(
6
),
065001
(
2015
).
25.
P.
Bakala
,
K.
Goluchová
,
G.
Török
,
E.
Šrámková
,
M. A.
Abramowicz
,
F. H.
Vincent
, and
G. P.
Mazur
, “
Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori
,”
Astron. Astrophys.
581
,
A35
A47
(
2015
).
26.
B.
Carter
, “
Global structure of the Kerr family of gravitational fields
,”
Phys. Rev.
174
(
5
),
1559
1571
(
1968
).
27.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Clarendon Press
,
Oxford
,
1983
).
28.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
San Francisco
,
1973
).
29.
J. M.
Bardeen
, “
A variational principle for rotating stars in general relativity
,”
Astrophys. J.
162
,
71
95
(
1970
).
30.
J.
Schee
and
Z.
Stuchlík
, “
Optical phenomena in the field of Braneworld Kerr black holes
,”
Int. J. Mod. Phys. D
18
(
6
),
983
1024
(
2009
).
31.
S. U.
Viergutz
, “
Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem
,”
Astron. Astrophys.
272
,
355
377
(
1993
).
32.
E.
Teo
, “
Spherical photon orbits around a Kerr black hole
,”
Gen. Relativ. Gravitation
35
(
11
),
1909
1926
(
2003
).
33.
P.
Bakala
,
P.
Čermák
,
S.
Hledík
,
Z.
Stuchlík
, and
K.
Truparová
, “
Extreme gravitational lensing in vicinity of Schwarzschild-de Sitter black holes
,”
Cent. Eur. J. Phys.
5
(
4
),
599
610
(
2007
).
34.

The photosphere of a Kerr black hole is a region of unstable spherical or circular photon orbits wrapping the black hole. The photosphere reaches its maximum extent in the equatorial plane between corotating and counter-rotating circular photon orbits, while it becomes infinitesimally thin on the polar axis (see Ref. 32).

35.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C++
(
Cambridge U.P.
,
New York
,
2007
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.