Based on the functional dependence of entropy on energy, and on Wien's distribution for black-body radiation, Max Planck obtained a formula for this radiation by an interpolation relation that fitted the experimental measurements of thermal radiation at the Physikalisch Technishe Reichanstalt (PTR) in Berlin in the late 19th century. Surprisingly, his purely phenomenological result turned out to be not just an approximation, as would have been expected, but an exact relation. To obtain a physical interpretation for his formula, Planck then turned to Boltzmann's 1877 paper on the statistical interpretation of entropy, which led him to introduce the fundamental concept of energy discreteness into physics. A novel aspect of our account that has been missed in previous historical studies of Planck's discovery is to show that Planck could have found his phenomenological formula partially derived in Boltzmann's paper in terms of a variational parameter. But the dependence of this parameter on temperature is not contained in this paper, and it was first derived by Planck.

1.
L.
Rosenfeld
, “
La premiére phase de l'èvolution de la Thèorie de Quanta
,”
Osiris
2
,
149
196
(
1936
).
2.
L.
Rosenfeld
,
“Max Planck et la dèfinition statistique de l'entropie”
in
Max Planck Festschrift
, edited by
B.
Kockel
,
W.
Macke
, and
A.
Papapetrou
(
Veb Deutscher Verlag Der Wissenschaften
,
Berlin
,
1958
), pp.
203
211
.
3.
M.
Klein
, “
Max Planck and the beginnings of the quantum theory
,”
Arch. Hist. Exact Sci.
1
,
459
479
(
1961
);
M.
Klein
,
“Thermodynamics and quanta in Planck's work,”
Phys. Today
19
(
11
),
23
32
(
1966
).
4.
For an excellent historical article on Planck's development of the quantum theory, containing also an extensive list of references, see
C. A.
Gearhart
, “
Planck, the quantum, and the historians
,”
Phys. Perspect.
4
,
170
215
(
2002
);
See also
H.
Kragh's
account in
Quantum Generations
(
Princeton U. P.
,
Princeton
,
1999
), pp.
58
,
63
;
and his article
“Max Planck, the reluctant revolutionary,”
Phys. World
13
,
31
35
(
2000
);
For biographies of Planck, see
J. L.
Heilbron
,
The Dilemmas of an Upright Man: Max Planck as Spokesman for German Science
(
University of California Press
,
Berkeley, CA
,
1986
);
B. R.
Brown
,
Planck, Driven by Vision, Broken by War
(
Oxford U. P.
,
New York
,
2015
).
5.
T.
Kuhn
,
Black-Body Theory and the Quantum Discontinuity, 1894–1912
(
Oxford U. P.
,
New York
,
1978
);
T.
Kuhn
,
“Revisiting Planck,”
Hist. Stud. Phys. Sci.
14
(
2
),
231
252
(
1984
).
6.
R.
Jost
, “
Planck-Kritik des T. Kuhn
,” in
Das Märchen von Elfenbeinernen Turm: Reden un Aufsätze
, Lecture Notes in Physics Monographs, German Edition (
Springer
,
1995
), pp.
67
78
. In passing, Jost writes: “Im Lichte dieser Feststellung aber bewundere ich Herrn Kuhns Ungehemmtheit, uns seinen Unsinn aufzutischen,” which roughly translates “what Kuhn has been dishing us is nonsense.”
7.
O.
Darrigol
, “
The historians' disagreement over the meaning of Planck's quantum
,”
Centaurus
43
,
219
239
(
2001
);
“The quantum enigma,”
in
The Cambridge Companion to Einstein
, edited by
M.
Janssen
and
C.
Lehner
(
Cambridge U.P.
,
Cambridge
,
2014
), pp.
117
142
.
8.
S. G.
Brush
,
Statistical Physics and the Atomic Theory of Matter
(
Princeton U. P.
,
Princeton
,
1983
);
R.
Balian
,
From Microphysics to Macrophysics, Methods and Applications of Statistical Physics
(
Springer Verlag
,
Berlin
,
1992
), Vols. I and II.
9.
D. M.
Greenberg
,
N.
Erez
,
M. O.
Scully
,
A. A.
Svidzinsky
, and
M. S.
Zubairy
, “
Planck, photon statistics, and Bose-Einstein condensation
,”
Prog. Opt.
50
,
275
330
(
2007
).
10.
S.
Seth
, “
Quantum physics
,” in
Handbook of the History of Physics
, edited by
J.
Buchwald
and
R.
Fox
(
Oxford U. P.
,
New York
, 2013).
11.
J.
Heilbron
, “
Nascent science. The scientific and psychological background to Bohr's Trilogy
,” in
Love, Literature and the Quantum Atom
(
Oxford U. P.
, 2013), Chap. 2.2.
12.
M.
Badino
, “
The odd couple: Boltzmann, Planck and the application of statistics to physics (1900–1913)
,”
Ann. Phys. (Berlin)
18
,
81
101
(
2009
);
M.
Badino
,
The Bumpy Road: Max Planck from Radiation Theory to the Quantum, (1896–1906)
(
Springer Briefs
,
2015
).
13.
L.
Boltzmann
, “
On the relation between the second law of thermodynamics and the probability calculations of the principles of thermal equilibrium
,”
Wien. Ber.
76
,
373
435
(
1877
);
Reprinted in
Wissenschaftliche Abhandlungen von Ludwig Boltzmann
(
Chelsea Publishing Company
,
New York
,
1968
), Vol. 2, pp.
164
223
.
14.
G.
Holton
and
Stephen G.
Brush
,
Introduction to Concepts and Theories in Physical Science
(
Addison-Wesley
,
1973
).
15.
A.
Pais
,
Subtle is the Lord, The Science and the Life of Albert Einstein
(
Oxford Press
,
New York
,
1982
), pp.
370
371
.
16.
R.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures in Physics
(
Addison-Wesley
,
1963
), Vol. 1, pp.
41
46
.
17.
Lord
Rayleigh
, “
Remarks upon the law of complete radiation
,”
Philos. Mag.
XLIX
,
539
540
(
1900
);
Lord
Rayleigh
,
“A comparison of two theories of radiation,”
Nature
72
,
293
294
(
1905
).
18.

In the limit of vanishing ϵ, Boltzmann's discrete model is only applicable to the motion of molecules in two dimension (See Ref. 13, p. 190).

19.
M.
Planck
, “
Zur theorie des gesetzes der energieverteilung im normal spectrum
,”
Verh. Dtsch. Phys. Ges.
2
,
237
245
(
1900
).
20.
See Ref. 15 p.
372
.
21.
A.
Einstein
, “
On a heuristic point of view concerning the production and tranformation of light
,”
Ann. Phys.
17
,
132
148
(
1905
).
22.
M.
Planck
,
Scientific Autobiography
, translated from German by F. Gaynor (
Philosophical Library
,
New York
,
1949
), pp.
39
41
;
M.
Planck
,
“Wissenschaftliche selbstbiographie,”
Acta Hist. Leopold.
19
,
16
17
(
1990
).
23.
M.
Planck
, “
The genesis and present state of development of the quantum theory, Nobel lecture, June 2, 1920
,” in
Nobel Lectures, Physics 1901–1921
(
Elsevier
,
Amsterdam
,
1967
), pp.
407
420
.
24.
C.
Jungnickel
and
R.
McCormmach
,
Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein
(
University of Chicago Press
,
Chicago
,
1986
), pp.
261
262
.
25.
A.
Hermann
,
The Genesis of Quantum Theory
, originally published by Physik Verlag, Mosbach/Baden, under the title Frügeschichte der Quantumtheorie (1899–1913), English translation by C. W. Nash (
Massachusetts Institute of Technology
,
Cambridge, MS
,
1971
), pp.
23
24
.
26.
W.
Wien
, “
Über die Energievertheilung im Emissionsspectrum eines schawrzen Körpers
,”
Ann. Phys.
294
,
662
669
(
1896
).
27.
L.
Boltzmann
, “
Ableitung des stefanschen gesetzes, betreffend die abhängigkeit der wärmestrahlung von der temperature aus der elektromagnetischen lichttheorie
,”
Ann. Phys.
22
,
291
294
(
1884
).
28.
M.
Planck
, “
Ueber eine verbesserung der wien'schen spectralgleichunge
,” reprinted in Max Planck,
Physikalische Abhandlungen und Vorträge
(
Friedr. Wieweg & Sohn
,
Braunschweig
,
1958
), Vol. I, pp.
687
689
.
29.
M.
Planck
, “
On irreversible radiation processes
,” reprinted in Max Planck,
Physikalische Abhandlungen und Vorträge
(
Friedr. Wieweg & Sohn
,
Braunschweig
,
1958
), Vol. I, pp.
493
600
.
30.
A.
Franklin
,
The Neglect of Experiments
(
Cambridge U. P.
,
Cambridge, MS
,
1986
), p.
1
. Franklin wrote that one of the greatest anticlimaxes in all of literature occurs at the end of Shakespeare's Hamlet. On a stage strewn with noble and heroic corpses—Hamlet, Laertes, Claudius, and Gertrude—the ambassadors from England arrive and announce that “Rosencrantz and Guildenstern are dead.” No one cares. A similar reaction might be produced among a group of physicist, or even among historians and philosophers, were someone to announce that “Lummer and Pringstein are dead.”
31.

Historians of science have followed Klein's statement that “it seems most likely that Planck was guided by the form Wien's distribution law,” when if fact there was not any other alternative.

32.
See Ref. 29, p.
597
.
33.
O.
Lummer
and
E.
Pringsheim
, “
Die verteilung der energie in spectrum des schwarzen körpers
,”
Verh. Dtsch. Phys. Ges.
1
,
23
41
(
1899
).
34.
H.
Rubens
and
F.
Kurlbaum
, “
Über die emission langwelliger wärmestrahlen dur die schwarzen körper bei verschieden termperaturen
,”
Preussiche Akad. Wiss.
929
941
(
1900
).
35.
H.
Rubens
and
E. F. N.
Nichols
, “
Versusche mit wärmerstraheln von grosser wellenlänge
,”
Ann. Phys.
60
,
418
496
(
1897
).
36.
M.
Planck
, “
Über des gesetzes der energieverteilung in normal spectrum
,”
Ann. Phys.
309(3)
,
564
566
(
1901
).
37.

It should be pointed out that it was Planck's very good fortune that Boltzmann's first treatment of his molecular gas model was in two dimensions. For each degree of freedom, the classical mean energy of a molecule is U = 12kT. Hence the physical three dimensional case with U = 32kT would not have been a useful model for Planck's electrical oscillators.

38.

But this constraint on p does not apply in the Stirling approximation for the factorials in WB. In his book (Ref. 5, p. 49), Kuhn sets p=λ and states that “standard variational techniques lead directly to the conclusion that for pn,” nj is given by Boltzmann's classical expression, Eq. (A18). But this claim is incorrect, because to obtain the distribution in the classical limit, Boltzmann set p= and λn.

39.

Boltzmann also considered p finite, but the case of interest related to Planck's formula corresponds to p.

40.

In the Stirling approximation the resulting values of nj, Eq. (A7), are not integers. In this case λ and n are also infinite, but the ratio λ/n is fixed and the ratio nj/n is finite corresponding to the fraction of molecules with energy jϵ.

41.
J. C.
Maxwell
, “
Illustrations of the dynamical theory of gases
,”
Philos. Mag.
19
,
19
32
(
1860
);
J. C.
Maxwell
,
Philos. Mag.
20
,
21
37
(
1860
);
reprinted in
The Scientific Papers of James Clerk Maxwell
(
Dover Publication, Inc
,
New York
,
1965
) pp.
377
409
.
42.
See Ref. 13, p.
190
.
43.
M.
Klein
, “
Contribution to paradigm lost, a review symposium
,”
ISIS
70
,
429
433
(
1979
).
44.
P.
Galison
, “
Kuhn and the quantum controversy
,”
Br. J. Philos. Sci.
32
,
71
85
(
1981
).
45.
A. A.
Needell
, “
Review of “Black-Body Theory and the Quantum Discontinuity,” by Thomas Kuhn
,”
ISIS
78
,
604
605
(
1987
).
46.
A.
Einstein
,
Ideas and Opinions
(
Crown Publishers
,
New York
,
1954
), p.
270
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.