More than a decade ago, Edwin Taylor issued a “call to action” that presented the case for basing introductory university mechanics teaching around the principle of stationary action [E. F. Taylor, Am. J. Phys. 71, 423–425 (2003)]. We report on our response to that call in the form of an investigation of the teaching and learning of the stationary action formulation of physics in a first-year university course. Our action physics instruction proceeded from the many-paths approach to quantum physics to ray optics, classical mechanics, and relativity. Despite the challenges presented by action physics, students reported it to be accessible, interesting, motivational, and valuable.

1.
E. F.
Taylor
, “
A call to action
,”
Am. J. Phys.
71
,
423
425
(
2003
).
2.
M.
Jammer
,
Concepts of Force
(
Dover
,
New York
,
1999
), preface to the Dover edition.
3.
C.
Lanczos
,
The Variational Principles of Mechanics
, 4th ed. (
University of Toronto Press
,
Toronto, ON
,
1970
).
4.
F.
Reif
, “
Scientific approaches to science education
,”
Phys. Today
39
(
11
),
48
54
(
1986
).
5.
J. L.
Docktor
and
José P.
Mestre
, “
Synthesis of discipline-based education research in physics
,”
Phys. Rev. Spec. Top. Phys. Educ. Res.
10
,
020119
(
2014
).
6.
E. F.
Taylor
,
S.
Vokos
,
J. M.
O'Meara
, and
N. S.
Thornber
, “
Teaching Feynman's sum-over-paths quantum theory
,”
Comput. Phys.
12
,
190
199
(
1998
).
7.
E. F.
Taylor's
least action web site, <www.eftaylor.com/leastaction.html>; T. Timberlake's least action Java simulation on the Compadre site, <www.compadre.org/portal/items/detail.cfm?ID=12400>.
8.

ANU physics students have free access to mathematica, which is used as a routine tool in the physics program.

9.
J.
Ogborn
and
E. F.
Taylor
, “
Quantum physics explains Newton's laws of motion
,”
Phys. Educ.
40
,
26
34
(
2005
).
10.
J.
Hanc
,
S.
Tujela
, and
M.
Hancova
, “
Simple derivation of Newtonian mechanics from the principle of least action
,”
Am. J. Phys.
71
,
386
391
(
2003
).
11.
D. E.
Neuenschwander
,
E. F.
Taylor
, and
S.
Tuleja
, “
Action: forcing energy to predict motion
,”
Phys. Teach.
44
,
146
152
(
2006
).
12.
T. A.
Moore
, “
Getting the most action out of least action: A proposal
,”
Am. J. Phys.
72
,
522
527
(
2004
).
13.
J.
Hanc
and
E. F.
Taylor
, “
From conservation of energy to the principle of least action: A story line
,”
Am. J. Phys.
72
,
514
521
(
2004
).
14.
J.
Hanc
,
E. F.
Taylor
, and
S.
Tuleja
, “
Deriving Lagrange's equations using elementary calculus
,”
Am. J. Phys.
72
,
510
513
(
2004
).
15.
J.
Hanc
,
S.
Tuleja
, and
M.
Hancova
, “
Symmetries and conservation laws: consequences of Noethers theorem
,”
Am. J. Phys.
72
,
428
435
(
2004
).
16.
Cassiopeia Project videos
, “
Action” and “QED
,” <http://www.cassiopeiaproject.com/vid_courses3.php?Tape_Name=physics>.
17.
See supplementary material at http://dx.doi.org/10.1119/1.4955145 for MATHEMATICA notebooks used for assignments and labs and the student attitude survey.
18.
L. C.
McDermott
, “
Oersted medal lecture 2001: physics education research–the key to student learning
,”
Am. J. Phys.
69
,
1127
1137
(
2001
).
19.

The data collection for the analysis presented in this paper was approved by the ANU Human Research Ethics Committee: Human ethics protocol 2014/327.

20.
L. P.
McGinness
and
C. M.
Savage
, “
Action concept inventory
,”
Phys. Rev. Phys. Educ. Res.
12
,
010133
(
2016
).
21.
D. E.
Meltzer
and
R. K.
Thornton
, “
Resource Letter ALIP1: Active-learning instruction in physics
,”
Am. J. Phys.
80
,
478
496
(
2012
).
23.
ANU
Physics Education Centre mission statement, <http://physics.anu.edu.au/education>.
25.
W. K.
Adams
and
C.
Wieman
, “
Development and validation of instruments to measure learning of expert-like thinking
,”
Int. J. Sci. Educ.
33
,
1289
1312
(
2011
).
26.
R. P.
Feynman
,
QED: The Strange Theory of Light and Matter
(
Princeton U. P.
,
Princeton, NJ
,
2006
).
27.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
28.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
Dover
,
New York
,
2010
).
29.
P. A. M.
Dirac
, “
The Lagrangian in quantum mechanics
,” Physikalische Zeitschrift der Sowjetunion (1948), Band 3, Heft 1; reprinted in
Selected Papers on Quantum Electrodynamics
, edited by
J.
Schwinger
(
Dover
,
New York
,
1958
), pp.
312
320
.
30.
B. G.
de Grooth
, “
Why is the propagation velocity of a photon in a transparent medium reduced?
,”
Am. J. Phys.
65
,
1156
1164
(
1997
).
31.
J. H.
Field
, “
Quantum mechanics in space-time: the Feynman path amplitude description of physical optics, de Broglie matter waves and quark and neutrino flavour oscillations
,”
Ann. Phys.
321
,
627
707
(
2006
).
32.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Pearson Prentice Hall
,
New Jersey
,
2005
).
33.
R.
Chabay
and
B.
Sherwood
, “
Restructuring the introductory electricity and magnetism course
,”
Am. J. Phys.
74
,
329
336
(
2006
).
34.
E. F.
Taylor
and
J. A.
Wheeler
,
Spacetime Physics
, 2nd ed. (
W. H. Freeman and Co
,
New York
,
1992
).
35.
E. F.
Taylor
and
J. A.
Wheeler
,
Exploring Black Holes: Introduction to General Relativity
(
Addison Wesley Longman
,
San Francisco, CA
,
2000
).
36.
J.
Ogborn
, “
A first introduction to quantum behavior
,” in
The Girep Conference
(
2006
); Available from Taylor's least action web site7 as part of the Action summary, <http://www.eftaylor.com/pub/ActionSummary.pdf>.
37.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
1950
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.