We quantitatively analyze a familiar classroom demonstration, Van Waltenhofen's eddy current pendulum, to predict the damping effect for a variety of plate geometries from first principles. Results from conformal mapping, finite element simulations, and a simplified model suitable for introductory classes are compared with experiments.

1.
C.
Babbage
and
J. F. W.
Herschel
, “
Account of the repetition of m. Arago's experiments on the magnetism manifested by various substances during the act of rotation
,”
Philos. Trans. R. Soc. London
115
,
467
496
(
1825
).
2.
M.
Faraday
, “
Experimental researches in electricity
,”
Philos. Trans. R. Soc. London
122
,
125
162
(
1832
).
3.
A.
von Waltenhofen
, “
On a direct measurement of the work of induction, and a thence-derived determination of the mechanical equivalent of heat
,”
Philos. Mag.
8
,
258
259
(
1879
).
4.
L. H.
Cadwell
, “
Magnetic damping: Analysis of an eddy current brake using an airtrack
,”
Am. J. Phys.
64
,
917
923
(
1996
).
5.
J. M.
Aguirregabiria
,
Antonio
Hernández
, and
Martín
Rivas
, “
Magnetic braking revisited
,”
Am. J. Phys.
65
,
851
856
(
1997
).
6.
X.
Xie
,
Z.
Wang
,
P.
Gu
,
Z.
Jian
,
X.
Chen
, and
Z.
Xie
, “
Investigation of magnetic damping on an air track
,”
Am. J. Phys
74
,
974
978
(
2006
).
7.
M.
Thompson
and
C.
Leung
, “
Determining the strength of an electromagnet through damped oscillations
,”
Phys. Educ.
46
,
587
590
(
2011
).
8.
P.
Onorato
and
A. D.
Ambrosis
, “
Magnetic damping: Integrating experimental and theoretical analysis
,”
Am. J. Phys.
80
,
27
35
(
2012
).
9.
FlexPDE, “A general-purpose commercial package to solve pdes,” <http://www.pdesolutions.com>.
10.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
USA
,
1975
).
11.
T.
Needham
,
Visual Complex Analysis
(
Oxford U.P.
,
UK
,
1999
).
12.
T. A.
Driscoll
and
L. N.
Trefethen
,
Schwarz-Christoffel Mapping
,
Camb. Mono. Appl. Comp. Math.
(
Cambridge U.P.
,
2002
).
13.
See supplementary material at http://dx.doi.org/10.1119/1.4954016 for computer code.
14.
L. N.
Trefethen
, “
Numerical computation of the schwarz-christoffel transformation
,”
SIAM J. Sci. Stat. Comp.
1
,
82
102
(
1980
).
15.
T. A.
Driscoll
, “
Algorithm 756: A matlab toolbox for schwarz-christoffel mapping
,”
ACM Trans. Math. Software
22
,
168
186
(
1996
).
16.
Y. A.
Melnikov
and
M. Y.
Melnikov
, “
Computability of series representations for green's functions in a rectangle
,”
Eng. Anal. Bound. Elem.
30
,
774
780
(
2006
).
17.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH Image to ImageJ: 25 years of image analysis
,”
Nat. Mater.
9
,
671
675
(
2012
).
18.
D.
Brown
and
W.
Christian
, “
Simulating what you see: Combining computer modeling with video analysis
,” in
Proceedings of the 16th Multimedia in Physics Learning and Teaching Conference, Ljubljana, Slovenia
(
2011
).
19.
M.
Luetzelschwab
,
P.
Laws
, and
M.
Gile
, “
Videopoint
,” Lenox Softworks (
1997
).
20.
Gregor M.
Novak
,
A.
Gavrin
, and
W.
Christian
,
Just-in-Time Teaching: Blending Active Learning with Web Technology
, 1st ed. (
Prentice Hall PTR
,
Upper Saddle River, NJ, USA
,
1999
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.