Simple analytic expressions for the polarizability of metallic nanoparticles are in wide use in the field of plasmonics, but their origins are not obvious. In this article, expressions for the polarizability of a particle are derived in the quasistatic limit in a manner that allows the physical origin of the terms to be clearly seen. The discussion is tutorial in nature, with particular attention given to the role of particle shape since this is a controlling factor in particle plasmon resonances.
References
1.
D. J.
Barber
and I. C.
Freestone
, “An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron microscopy
,” Archaeometry
32
, 33
–45
(1990
).2.
M.
Faraday
, “Experimental relations of gold (and other metals) to light
,” Philos. Trans. R. Soc.
147
, 145
–181
(1857
).3.
G.
Mie
, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen
,” Ann. Phys.
25
, 377
–445
(1908
).4.
D. K.
Gramotnev
and S. I.
Bozhevolnyi
, “Nanofocusing of electromagnetic radiation
,” Nature Photon.
8
, 13
–22
(2013
).5.
W. A.
Murray
, J. R.
Suckling
, and W. L.
Barnes
, “Overlayers on silver nanotriangles: Field confinement and spectral position of localized surface plasmon resonances
,” Nano Lett.
6
, 1772
–1777
(2006
).6.
E. C.
Le Ru
and P. G.
Etchegoin
, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects
, 1st ed. (Elsevier
, Amsterdam
, 2009
).7.
P.
Andrew
, S. C.
Kitson
, and W. L.
Barnes
, “Surface-plasmon energy gaps and photoabsorption
,” J. Mod. Opt.
44
, 395
–406
(1997
).8.
R.
Gruhlke
, W.
Holland
, and D.
Hall
, “Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film
,” Phys. Rev. Lett.
56
, 2838
–2841
(1986
).9.
S. C.
Kitson
, W. L.
Barnes
, and J. R.
Sambles
, “Surface-plasmon energy gaps and photoluminescence
,” Phys. Rev. B.
52
, 11441
–11446
(1995
).10.
P.
Törmä
and W. L.
Barnes
, “Strong coupling between surface plasmon polaritons and emitters: a review
,” Rep. Prog. Phys.
78
, 013901
(2015
).11.
D. K.
Polyushkin
, E.
Hendry
, E. K.
Stone
, and W. L.
Barnes
, “THz generation from plasmonic nanoparticle arrays
,” Nano Lett.
11
, 4718
–4724
(2011
).12.
U. C.
Fischer
and D. W.
Pohl
, “Observation of single-particle plasmons by near-field microscopy
,” Phys. Rev. Lett.
62
, 458
–462
(1989
).13.
H. A.
Atwater
and A.
Polman
, “Plasmonics for improved photovoltaic devices
,” Nat. Mater.
9
, 205
–213
(2010
).14.
C.
Loo
, A.
Lowery
, N. J.
Halas
, J.
West
, and R.
Drezek
, “Immunotargeted nanoshells for integrated cancer imaging and therapy
,” Nano Lett.
5
, 709
–711
(2005
).15.
K. A.
Willets
and R. P.
Van Duyne
, “Localized surface plasmon resonance spectroscopy and sensing
,” Ann. Rev. Phys. Chem.
58
, 267
–297
(2007
).16.
M.
Wu
, B.
Ma
, T.
Pan
, S.
Chen
, and J.
Sun
, “Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties
,” Adv. Funct. Mater.
26
, 569
–576
(2016
).17.
N.
Meinzer
, W. L.
Barnes
, and I. R.
Hooper
, “Plasmonic meta-atoms and metasurfaces
,” Nature Photon.
8
, 889
–898
(2014
).18.
D. W.
Lynch
and W. R.
Hunter
, “Comments on the optical constants of metals and an introduction to the data of several metals
,” in Handbook of Optical Constants of Solids
, edited by E. D.
Palik
(Academic Press, Inc.
, Orlando
, 1985
), pp. 275
–367
.19.
C. F.
Bohren
and D. R.
Huffman
, Absorption and Scattering of Light by Small Particles
(Wiley-VCH
, Weinheim
, 2004
).20.
R. C.
Jones
, “A generalization of the dielectric ellipsoid problem
,” Phys. Rev.
68
, 93
–96
(1945
).21.
D. J.
Griffiths
, Introduction to Electrodynamics
, 3rd ed. (Prentice-Hall
, Upper Saddle River
, 1999
).22.
J. M.
Luther
, P. K.
Jain
, T.
Ewers
, and A. P.
Alivisatos
, “Localized surface plasmon resonances arising from free carriers in doped quantum dots
,” Nat. Mater.
10
, 361
–366
(2011
).23.
We assume the charges on the plates of the capacitor are fixed so that the field they produce between the plates, E0, is both homogeneous and constant.
24.
In the context of the present discussion, metals can be considered as a subset of dielectrics in the sense that their permittivity is not infinite (we are not interested here in perfect metals (perfect conductors) where the electric field is totally excluded from the metal), there will thus be an electric field present inside the metal.
25.
C. J.
Powell
and J. B.
Swan
, “Origin of the characteristic electron energy losses in aluminum
,” Phys. Rev.
115
, 869
–875
(1959
).26.
J. A.
Scholl
, A. L.
Koh
, and J. A.
Dionne
, “Quantum plasmon resonances of individual metallic nanoparticles
,” Nature
483
, 421
–427
(2012
).27.
F.-P.
Schmidt
et al, “Universal dispersion of surface plasmons in flat nanostructures
,” Nat. Commun.
5
, 3604
–3610
(2014
).28.
M.
Zhao
et al, “Visible surface plasmon modes in single Bi2Te3 nanoplate
,” Nano Lett.
15
, 8331
–8335
(2015
).29.
M.
Dienerowitz
, M.
Mazilu
, and K.
Dholakia
, “Optical manipulation of nanoparticles: A review
,” J. Nanophot.
2
, 021875
(2008
).30.
C. F.
Bohren
, “How can a particle absorb more than the light incident on it?
,” Am. J. Phys.
51
, 323
–327
(1983
).31.
E. M.
Landau
, L. D.
Lifshitz
, and L. P.
Pitaevskii
, Electrodynamics of Continuous Media
, Course of Theoretical Physics Vol. 8
, 2nd ed. (Elsevier
, Oxford
, 2006
).32.
We retain L here rather than insert the numerical value, so as to allow the derivation of a general expression.
34.
M.
Natta
, “Surface plasma oscillations in bubble
,” Solid State Commun.
7
, 823
–825
(1969
).35.
S.
Coyle
et al, “Confined plasmons in metallic nanocavities
,” Phys. Rev. Lett.
87
, 176801
(2001
).36.
W. K. H.
Panofsky
and M.
Philips
, Electromagnetism
, 2nd ed. (Addison-Wesley
, Reading
, 1955
).37.
N. W.
Aschcroft
and N. D.
Mermin
, Solid State Physics
, 1st ed. (Holt Rinehart and Winston
, Frome
, 1976
).38.
39.
Note that the lowest symmetry object for which the quasistatic approach is valid (i.e., that satisfies the requirement that the field in the particle be homogeneous) is an ellipsoid (Ref. 40).
40.
H.
Kang
and G. W.
Milton
, “Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture
,” Arch. Ration. Mech. Anal.
188
, 93
–116
(2008
).41.
L.
Novotny
and B.
Hecht
, Principles of Nano-Optics
, 1st ed. (Cambridge U.P.
, Cambridge
, 2006
).42.
V.
Myroshnychenko
et al, “Modelling the optical response of gold nanoparticles
,” Chem. Soc. Rev.
37
, 1792
–1805
(2008
).43.
Actually, the resonance condition can be met, but only if the surrounding medium has a complex permittivity; the surrounding medium will need to support gain, i.e., be capable of amplifying (Ref. 44) so as to offset the damping, both radiative and non-radiative, of the metallic particle.
44.
N.
Lawandy
, “Localized surface plasmon singularities in amplifying media
,” Appl. Phys. Lett.
85
, 5040
–5042
(2004
).45.
A. V.
Whitney
et al, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition
,” J. Phys. Chem. B
109
, 20522
(2005
).46.
G.
Raschke
et al, “Biomolecular recognition based on single gold nanoparticle light scattering
,” Nano Lett.
3
, 935
–938
(2003
).47.
K. L.
Kelly
, E.
Coronado
, L. L.
Zhao
, and G. C.
Schatz
, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,” J. Phys. Chem. B
107
, 668
–677
(2003
).48.
M.
Meier
and A.
Wokaun
, “Enhanced fields on large metal particles: dynamic depolarization
,” Opt. Lett.
8
, 581
–583
(1983
).49.
H.
Kuwata
, H.
Tamaru
, K.
Esumi
, and K.
Miyano
, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation
,” Appl. Phys. Lett.
83
, 4625
–4627
(2003
).50.
A.
Moroz
, “Depolarization field of spheroidal particles
,” J. Opt. Soc. Am. B
26
, 517
–527
(2009
).51.
A.
Tcherniak
, J. W.
Ha
, L. S.
Slaughter
, and S.
Link
, “Probing a century old prediction one plasmonic particle at a time
,” Nano Lett.
10
, 1398
–1404
(2010
).52.
C. P.
Burrows
and W. L.
Barnes
, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays
,” Opt. Express
18
, 3187
–3198
(2010
).53.
M. W.
Knight
, Y.
Wu
, J. B.
Lassiter
, P.
Nordlander
, and N. J.
Halas
, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle
,” Nano Lett.
9
, 2188
–2192
(2009
).54.
W.
Rechberger
et al, “Optical properties of two interacting gold nanoparticles
,” Opt. Commun.
220
, 137
–141
(2003
).55.
F. J.
García de Abajo
, “Colloquium: Light scattering by particle and hole arrays
,” Rev. Mod. Phys.
79
, 1267
–1290
(2007
).56.
U.
Hohenester
and A.
Trügler
, “MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles
,” Comp. Phys. Commun.
183
, 370
–381
(2012
).57.
J.
Parsons
, C. P.
Burrows
, J. R.
Sambles
, and W. L.
Barnes
, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures
,” J. Mod. Opt.
57
, 356
–365
(2010
).58.
C.
Noguez
, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment
,” J. Phys. Chem. C
111
, 3806
–3819
(2007
).59.
U.
Kreibig
and M.
Vollmer
, Optical Properties of Metallic Clusters
(Springer
, Berlin
, 1995
).60.
S. M.
Barnett
, B.
Huttner
, and R.
Loudon
, “Decay of excited atoms in absorbing dielectrics
,” J. Phys. B: At. Mol. Opt. Phys.
29
, 3763
–3781
(1996
).61.
P.
Lorrain
, D. R.
Corson
, and F.
Lorrain
, Electromagnetic Fields and Waves
, 3rd ed. (W. H. Freeman
, New York
, 1988
).62.
See http://www.nanoparticle.com for information about the research leading to Figure 1a.
63.
See https://www.comsol.com for details of the numerical package COMSOL.
© 2016 American Association of Physics Teachers.
2016
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.