Simple analytic expressions for the polarizability of metallic nanoparticles are in wide use in the field of plasmonics, but their origins are not obvious. In this article, expressions for the polarizability of a particle are derived in the quasistatic limit in a manner that allows the physical origin of the terms to be clearly seen. The discussion is tutorial in nature, with particular attention given to the role of particle shape since this is a controlling factor in particle plasmon resonances.

1.
D. J.
Barber
and
I. C.
Freestone
, “
An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron microscopy
,”
Archaeometry
32
,
33
45
(
1990
).
2.
M.
Faraday
, “
Experimental relations of gold (and other metals) to light
,”
Philos. Trans. R. Soc.
147
,
145
181
(
1857
).
3.
G.
Mie
, “
Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen
,”
Ann. Phys.
25
,
377
445
(
1908
).
4.
D. K.
Gramotnev
and
S. I.
Bozhevolnyi
, “
Nanofocusing of electromagnetic radiation
,”
Nature Photon.
8
,
13
22
(
2013
).
5.
W. A.
Murray
,
J. R.
Suckling
, and
W. L.
Barnes
, “
Overlayers on silver nanotriangles: Field confinement and spectral position of localized surface plasmon resonances
,”
Nano Lett.
6
,
1772
1777
(
2006
).
6.
E. C.
Le Ru
and
P. G.
Etchegoin
,
Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects
, 1st ed. (
Elsevier
,
Amsterdam
,
2009
).
7.
P.
Andrew
,
S. C.
Kitson
, and
W. L.
Barnes
, “
Surface-plasmon energy gaps and photoabsorption
,”
J. Mod. Opt.
44
,
395
406
(
1997
).
8.
R.
Gruhlke
,
W.
Holland
, and
D.
Hall
, “
Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film
,”
Phys. Rev. Lett.
56
,
2838
2841
(
1986
).
9.
S. C.
Kitson
,
W. L.
Barnes
, and
J. R.
Sambles
, “
Surface-plasmon energy gaps and photoluminescence
,”
Phys. Rev. B.
52
,
11441
11446
(
1995
).
10.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: a review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
11.
D. K.
Polyushkin
,
E.
Hendry
,
E. K.
Stone
, and
W. L.
Barnes
, “
THz generation from plasmonic nanoparticle arrays
,”
Nano Lett.
11
,
4718
4724
(
2011
).
12.
U. C.
Fischer
and
D. W.
Pohl
, “
Observation of single-particle plasmons by near-field microscopy
,”
Phys. Rev. Lett.
62
,
458
462
(
1989
).
13.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
,
205
213
(
2010
).
14.
C.
Loo
,
A.
Lowery
,
N. J.
Halas
,
J.
West
, and
R.
Drezek
, “
Immunotargeted nanoshells for integrated cancer imaging and therapy
,”
Nano Lett.
5
,
709
711
(
2005
).
15.
K. A.
Willets
and
R. P.
Van Duyne
, “
Localized surface plasmon resonance spectroscopy and sensing
,”
Ann. Rev. Phys. Chem.
58
,
267
297
(
2007
).
16.
M.
Wu
,
B.
Ma
,
T.
Pan
,
S.
Chen
, and
J.
Sun
, “
Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties
,”
Adv. Funct. Mater.
26
,
569
576
(
2016
).
17.
N.
Meinzer
,
W. L.
Barnes
, and
I. R.
Hooper
, “
Plasmonic meta-atoms and metasurfaces
,”
Nature Photon.
8
,
889
898
(
2014
).
18.
D. W.
Lynch
and
W. R.
Hunter
, “
Comments on the optical constants of metals and an introduction to the data of several metals
,” in
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Academic Press, Inc.
,
Orlando
,
1985
), pp.
275
367
.
19.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley-VCH
,
Weinheim
,
2004
).
20.
R. C.
Jones
, “
A generalization of the dielectric ellipsoid problem
,”
Phys. Rev.
68
,
93
96
(
1945
).
21.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice-Hall
,
Upper Saddle River
,
1999
).
22.
J. M.
Luther
,
P. K.
Jain
,
T.
Ewers
, and
A. P.
Alivisatos
, “
Localized surface plasmon resonances arising from free carriers in doped quantum dots
,”
Nat. Mater.
10
,
361
366
(
2011
).
23.
We assume the charges on the plates of the capacitor are fixed so that the field they produce between the plates, E0, is both homogeneous and constant.
24.
In the context of the present discussion, metals can be considered as a subset of dielectrics in the sense that their permittivity is not infinite (we are not interested here in perfect metals (perfect conductors) where the electric field is totally excluded from the metal), there will thus be an electric field present inside the metal.
25.
C. J.
Powell
and
J. B.
Swan
, “
Origin of the characteristic electron energy losses in aluminum
,”
Phys. Rev.
115
,
869
875
(
1959
).
26.
J. A.
Scholl
,
A. L.
Koh
, and
J. A.
Dionne
, “
Quantum plasmon resonances of individual metallic nanoparticles
,”
Nature
483
,
421
427
(
2012
).
27.
F.-P.
Schmidt
 et al, “
Universal dispersion of surface plasmons in flat nanostructures
,”
Nat. Commun.
5
,
3604
3610
(
2014
).
28.
M.
Zhao
 et al, “
Visible surface plasmon modes in single Bi2Te3 nanoplate
,”
Nano Lett.
15
,
8331
8335
(
2015
).
29.
M.
Dienerowitz
,
M.
Mazilu
, and
K.
Dholakia
, “
Optical manipulation of nanoparticles: A review
,”
J. Nanophot.
2
,
021875
(
2008
).
30.
C. F.
Bohren
, “
How can a particle absorb more than the light incident on it?
,”
Am. J. Phys.
51
,
323
327
(
1983
).
31.
E. M.
Landau
,
L. D.
Lifshitz
, and
L. P.
Pitaevskii
,
Electrodynamics of Continuous Media
, Course of Theoretical Physics Vol.
8
, 2nd ed. (
Elsevier
,
Oxford
,
2006
).
32.
We retain L here rather than insert the numerical value, so as to allow the derivation of a general expression.
33.
To understand the modes supported by voids in metals, we need to swap the roles of ε1 and ε2. If we do this in Eq. (31) and follow through the analysis that led to Eq. (32) we find that the resonant condition, using the Drude formula for the permittivity of the metal, Eq. (33), is ω=ωP2/3 (Refs. 34 and 35).
34.
M.
Natta
, “
Surface plasma oscillations in bubble
,”
Solid State Commun.
7
,
823
825
(
1969
).
35.
S.
Coyle
 et al, “
Confined plasmons in metallic nanocavities
,”
Phys. Rev. Lett.
87
,
176801
(
2001
).
36.
W. K. H.
Panofsky
and
M.
Philips
,
Electromagnetism
, 2nd ed. (
Addison-Wesley
,
Reading
,
1955
).
37.
N. W.
Aschcroft
and
N. D.
Mermin
,
Solid State Physics
, 1st ed. (
Holt Rinehart and Winston
,
Frome
,
1976
).
38.
M.
Fox
,
Optical Properties of Solids
, 2nd ed. (
Oxford U.P.
,
Oxford
,
2010
).
39.
Note that the lowest symmetry object for which the quasistatic approach is valid (i.e., that satisfies the requirement that the field in the particle be homogeneous) is an ellipsoid (Ref. 40).
40.
H.
Kang
and
G. W.
Milton
, “
Solutions to the Pólya–Szegö conjecture and the weak Eshelby conjecture
,”
Arch. Ration. Mech. Anal.
188
,
93
116
(
2008
).
41.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 1st ed. (
Cambridge U.P.
,
Cambridge
,
2006
).
42.
V.
Myroshnychenko
 et al, “
Modelling the optical response of gold nanoparticles
,”
Chem. Soc. Rev.
37
,
1792
1805
(
2008
).
43.
Actually, the resonance condition can be met, but only if the surrounding medium has a complex permittivity; the surrounding medium will need to support gain, i.e., be capable of amplifying (Ref. 44) so as to offset the damping, both radiative and non-radiative, of the metallic particle.
44.
N.
Lawandy
, “
Localized surface plasmon singularities in amplifying media
,”
Appl. Phys. Lett.
85
,
5040
5042
(
2004
).
45.
A. V.
Whitney
 et al, “
Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition
,”
J. Phys. Chem. B
109
,
20522
(
2005
).
46.
G.
Raschke
 et al, “
Biomolecular recognition based on single gold nanoparticle light scattering
,”
Nano Lett.
3
,
935
938
(
2003
).
47.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
,
668
677
(
2003
).
48.
M.
Meier
and
A.
Wokaun
, “
Enhanced fields on large metal particles: dynamic depolarization
,”
Opt. Lett.
8
,
581
583
(
1983
).
49.
H.
Kuwata
,
H.
Tamaru
,
K.
Esumi
, and
K.
Miyano
, “
Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation
,”
Appl. Phys. Lett.
83
,
4625
4627
(
2003
).
50.
A.
Moroz
, “
Depolarization field of spheroidal particles
,”
J. Opt. Soc. Am. B
26
,
517
527
(
2009
).
51.
A.
Tcherniak
,
J. W.
Ha
,
L. S.
Slaughter
, and
S.
Link
, “
Probing a century old prediction one plasmonic particle at a time
,”
Nano Lett.
10
,
1398
1404
(
2010
).
52.
C. P.
Burrows
and
W. L.
Barnes
, “
Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays
,”
Opt. Express
18
,
3187
3198
(
2010
).
53.
M. W.
Knight
,
Y.
Wu
,
J. B.
Lassiter
,
P.
Nordlander
, and
N. J.
Halas
, “
Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle
,”
Nano Lett.
9
,
2188
2192
(
2009
).
54.
W.
Rechberger
 et al, “
Optical properties of two interacting gold nanoparticles
,”
Opt. Commun.
220
,
137
141
(
2003
).
55.
F. J.
García de Abajo
, “
Colloquium: Light scattering by particle and hole arrays
,”
Rev. Mod. Phys.
79
,
1267
1290
(
2007
).
56.
U.
Hohenester
and
A.
Trügler
, “
MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles
,”
Comp. Phys. Commun.
183
,
370
381
(
2012
).
57.
J.
Parsons
,
C. P.
Burrows
,
J. R.
Sambles
, and
W. L.
Barnes
, “
A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures
,”
J. Mod. Opt.
57
,
356
365
(
2010
).
58.
C.
Noguez
, “
Surface plasmons on metal nanoparticles: The influence of shape and physical environment
,”
J. Phys. Chem. C
111
,
3806
3819
(
2007
).
59.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metallic Clusters
(
Springer
,
Berlin
,
1995
).
60.
S. M.
Barnett
,
B.
Huttner
, and
R.
Loudon
, “
Decay of excited atoms in absorbing dielectrics
,”
J. Phys. B: At. Mol. Opt. Phys.
29
,
3763
3781
(
1996
).
61.
P.
Lorrain
,
D. R.
Corson
, and
F.
Lorrain
,
Electromagnetic Fields and Waves
, 3rd ed. (
W. H. Freeman
,
New York
,
1988
).
62.
See http://www.nanoparticle.com for information about the research leading to Figure 1a.
63.
See https://www.comsol.com for details of the numerical package COMSOL.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.