We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

1.
T.
Womelsdorf
and
P.
Fries
, “
The role of neuronal synchronization in selective attention
,”
Curr. Opin. Neurobiol.
17
(
2
),
154
160
(
2007
).
2.
J.
Fell
and
N.
Axmacher
, “
The role of phase synchronization in memory processes
,”
Nat. Rev. Neurosci.
12
(
2
),
105
118
(
2011
).
3.
A. K.
Engel
and
W.
Singer
, “
Temporal binding and the neural correlates of sensory awareness
,”
Trends Cognit. Sci.
5
(
1
),
16
25
(
2001
).
4.
P.
Jiruska
,
M.
de Curtis
,
J. G.
Jefferys
,
C. A.
Schevon
,
S. J.
Schiff
, and
K.
Schindler
, “
Synchronization and desynchronization in epilepsy: Controversies and hypotheses
,”
J. Physiol.
591
(
4
),
787
797
(
2013
).
5.
C.
Hammond
,
H.
Bergman
, and
P.
Brown
, “
Pathological synchronization in Parkinson's disease: Networks, models and treatments
,”
Trends Neurosci.
30
(
7
),
357
364
(
2007
).
6.
L. A.
Jorgenson
 et al, “
The brain initiative: Developing technology to catalyse neuroscience discovery
,”
Philos. Trans. R. Soc. London B: Biol. Sci.
370
(
1668
),
8
19
(
2015
).
7.
F. A.
Azevedo
,
L. R.
Carvalho
 et al, “
Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain
,”
J. Comp. Neurol.
513
(
5
),
532
541
(
2009
).
8.
O.
Sporns
,
G.
Tononi
, and
R.
Kötter
, “
The human connectome: A structural description of the human brain
,”
PLoS Comput. Biol.
1
(
4
),
245
251
(
2005
).
9.
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
, “
Clustering and synchronization of n huygens clocks
,”
Physica A
388
(
24
),
5013
5023
(
2009
).
10.
B.
Trees
,
V.
Saranathan
, and
D.
Stroud
, “
Synchronization in disordered Josephson junction arrays: Small-world connections and the Kuramoto model
,”
Phys. Rev. E
71
(
1
),
016215
(
2005
).
11.
K.
Kiers
,
T.
Klein
,
J.
Kolb
,
S.
Price
, and
J. C.
Sprott
, “
Chaos in a nonlinear analog computer
,”
Int. J. Bifurcation Chaos
14
(
08
),
2867
2873
(
2004
).
12.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
(
10
),
2109
2112
(
1998
).
13.
M. D.
Humphries
,
K.
Gurney
, and
T. J.
Prescott
, “
The brainstem reticular formation is a small-world, not scale-free, network
,”
Proc. R. Soc. London B: Biol. Sci.
273
(
1585
),
503
511
(
2006
).
14.
Y.
He
,
Z. J.
Chen
, and
A. C.
Evans
, “
Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
,”
Cereb. Cortex
17
(
10
),
2407
2419
(
2007
).
15.
D. J.
Smit
,
C. J.
Stam
,
D.
Posthuma
,
D. I.
Boomsma
, and
E. J.
De Geus
, “
Heritability of small-world networks in the brain: A graph theoretical analysis of resting-state EEG functional connectivity
,”
Human Brain Mapp.
29
(
12
),
1368
1378
(
2008
).
16.
C.
Koch
,
Biophysics of Computation: Information Processing in Single Neurons
(
Oxford
U.P.
,
2004
), pp. 5–24.
17.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
(
4
),
500
544
(
1952
).
18.
D.
Hansel
,
G.
Mato
,
C.
Meunier
, and
L.
Neltner
, “
On numerical simulations of integrate-and-fire neural networks
,”
Neural Comput.
10
(
2
),
467
483
(
1998
).
19.
M. J.
Shelley
and
L.
Tao
, “
Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks
,”
J. Comput. Neurosci.
11
(
2
),
111
119
(
2001
).
20.
E.
Süli
and
D. F.
Mayers
,
An Introduction to Numerical Analysis
(
Cambridge
U.P.
,
2003
), pp. 328–331.
21.
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
(
3
),
186
198
(
2009
).
22.
P.
Erdös
and
A.
Rényi
, “
On random graphs
,”
Publ. Math. Debrecen
6
,
290
297
(
1959
).
23.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
(
5439
),
509
512
(
1999
).
24.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
25.
D. J.
Watts
,
Six Degrees: The Science of a Connected Age
(
W. W. Norton & Company
,
2004
), pp. 69–92.
26.
M.
Newman
,
Networks: An Introduction
(
Oxford U.P.
,
Oxford
,
2010
).
27.
D. S.
Bassett
and
E.
Bullmore
, “
Small-world brain networks
,”
Neuroscientist
12
(
6
),
512
523
(
2006
).
28.
M.
Rubinov
and
O.
Sporns
, “
Complex network measures of brain connectivity: Uses and interpretations
,”
Neuroimage
52
(
3
),
1059
1069
(
2010
).
29.
M.
Barahona
and
L. M.
Pecora
, “
Synchronization in small-world systems
,”
Phys. Rev. Lett.
89
(
5
),
054101
(
2002
).
30.
P.
Dayan
and
L. F.
Abbott
,
Theoretical Neuroscience
(
MIT Press
,
Cambridge, MA
,
2001
).
31.
E.
Anderson
,
Z.
Bai
,
J.
Dongarra
 et al, “
Lapack: A portable linear algebra library for high- performance computers
,” in
Proceedings of the 1990 ACM/IEEE conference on Supercomputing
(IEEE Computer Society Press,
1990
), pp.
2
11
.
32.
See supplemental material at http://dx.doi.org/10.1119/1.4945009 for python code.
33.
P. H.
Tiesinga
and
T. J.
Sejnowski
, “
Rapid temporal modulation of synchrony by competition in cortical interneuron networks
,”
Neural Comput.
16
(
2
),
251
275
(
2004
).
34.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
(
3
),
358
369
(
2000
).
35.
T.
Kreuz
,
D.
Chicharro
,
C.
Houghton
,
R. G.
Andrzejak
, and
F.
Mormann
, “
Monitoring spike train synchrony
,”
J. Neurophysiol.
109
(
5
),
1457
1472
(
2013
).
36.
D.
Golomb
and
J.
Rinzel
, “
Dynamics of globally coupled inhibitory neurons with heterogeneity
,”
Phys. Rev. E
48
(
6
),
4810
4814
(
1993
).
37.
See <www.scholarpedia.org/article/Neuronal_synchrony_measures> for a nice illustration of this idea.
38.
N.
Brunel
and
X.-J.
Wang
, “
What determines the frequency of fast network oscillations with irregular neural discharges? I. synaptic dynamics and excitation-inhibition balance
,”
J. Neurophysiol.
90
(
1
),
415
430
(
2003
).
39.
H.
Hong
,
M.-Y.
Choi
, and
B. J.
Kim
, “
Synchronization on small-world networks
,”
Phys. Rev. E
65
(
2
),
026139
(
2002
).
40.
H.
Hong
,
B. J.
Kim
,
M.
Choi
, and
H.
Park
, “
Factors that predict better synchronizability on complex networks
,”
Phys. Rev. E
69
(
6
),
067105
(
2004
).
41.
T.
Nishikawa
,
A. E.
Motter
,
Y.-C.
Lai
, and
F. C.
Hoppensteadt
, “
Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?
,”
Phys. Rev. Lett.
91
(
1
),
014101
(
2003
).
42.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
(
3
),
93
153
(
2008
).
43.
B.
Percha
,
R.
Dzakpasu
,
M.
Zochowski
, and
J.
Parent
, “
Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy
,”
Phys. Rev. E
72
(
3
),
031909
(
2005
).
44.
X.-J.
Wang
and
G.
Buzsáki
, “
Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model
,”
J. Neurosci.
16
(
20
),
6402
6413
(
1996
).
45.
H.
Markram
,
M.
Toledo-Rodriguez
,
Y.
Wang
,
A.
Gupta
,
G.
Silberberg
, and
C.
Wu
, “
Interneurons of the neocortical inhibitory system
,”
Nat. Rev. Neurosci.
5
(
10
),
793
807
(
2004
).
46.
G.
Buzsáki
and
X.-J.
Wang
, “
Mechanisms of gamma oscillations
,”
Annu. Rev. Neurosci.
35
,
203
225
(
2012
).
47.
G.
Fagiolo
, “
Clustering in complex directed networks
,”
Phys. Rev. E
76
(
2
),
026107
(
2007
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.