The de Broglie relation is revisited in connection with an ab initio relativistic description of particles and waves, which is the same treatment that historically led to this famous relation. In the same context of the Minkowski four-vector formalism, we also discuss the phase and the group velocity of a matter wave, explicitly showing that both transform as ordinary velocities under a Lorentz transformation. We show that such a transformation rule is a necessary condition for the covariance of the de Broglie relation, and stress the pedagogical value of the Einstein-Minkowski-Lorentz relativistic context in the presentation of the de Broglie relation.

1.
E.
MacKinnon
, “
de Broglie thesis: A critical retrospective
,”
Am. J. Phys.
44
,
1047
1055
(
1976
).
2.
J. M.
Espinosa
, “
Physical properties of de Broglie phase waves
,”
Am. J. Phys.
50
,
357
362
(
1982
).
3.
R. W.
Robinett
,
Quantum Mechanics. Classical Results, Modern Systems, and Visualized Examples
(
Oxford U.P.
,
New York
,
1997
).
4.
W. S. C.
Williams
,
Introducing Special Relativity
(
Taylor and Francis
,
London
,
2002
).
5.
G.
Giuliani
, “
Experiment and theory: the case of Doppler effect for photons
,”
Eur. J. Phys.
34
,
1035
1047
(
2013
).
6.
T.
Ferbel
, “
Simple illustration of the equivalence of a wave and of a particle description for light
,”
Am. J. Phys.
48
,
675
676
(
1980
).
7.
J.
Haslett
, “
DeBroglie wavelength and DeBroglie thesis
,”
Am. J. Phys.
49
,
192
(
1981
).
8.
P. C.
Peters
, “
Does a group velocity larger than c violate relativity?
,”
Am. J. Phys.
56
,
129
131
(
1988
).
9.
R. I.
Smith
, “
The velocities of light
,”
Am. J. Phys.
38
,
978
984
(
1970
).
10.
F.
Rahaman
,
The Special Theory of Relativity. A Mathematical Approach
(
Springer
,
New Delhi
,
2014
).
11.
J. M.
Houlrik
, “
The relativistic wave vector
,”
Eur. J. Phys.
30
,
777
783
(
2009
).
12.
J.
Strnad
and
W.
Kuhn
, “
On the de Broglie waves
,”
Eur. J. Phys.
6
,
176
179
(
1985
).
13.
P. C.
Peters
, “
Consistency of the de Broglie relations with special relativity
,”
Am. J. Phys.
38
,
931
932
(
1970
).
14.
M. S.
Samberg
, “
Doppler shifted de Broglie wave
,”
Am. J. Phys.
46
,
309
(
1978
).
15.
A. I. M.
Rae
,
Quantum Mechanics
(
Institute of Physics Publishing
,
London
,
2002
) 4th Ed.
16.
D.
Paul
, “
Dispersion relation for de Broglie waves
,”
Am. J. Phys.
48
,
283
284
(
1980
).
17.
J.
Güémez
, “
An undergraduate exercise in the first law of relativistic thermodynamics
,”
Eur. J. Phys.
31
,
1209
1232
(
2010
).
18.
R. A.
Bachman
, “
Relativistic phase velocity transformation
,”
Am. J. Phys.
57
,
628
630
(
1989
).
19.
G. E.
Stedman
, “
Relativistic transformation of group velocity via spatial filtering
,”
Am. J. Phys.
60
,
1117
1122
(
1992
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.