A numerical matrix methodology is applied to quantum problems with periodic potentials. The procedure consists essentially in replacing the true potential by an alternative one, restricted by an infinite square well, and in expressing the wave functions as finite superpositions of eigenfunctions of the infinite well. A matrix eigenvalue equation then yields the energy levels of the periodic potential within an acceptable accuracy. The methodology has been successfully used to deal with problems based on the well-known Kronig-Penney (KP) model. Besides the original model, these problems are a dimerized KP solid, a KP solid containing a surface, and a KP solid under an external field. A short list of additional problems that can be solved with this procedure is presented.

1.
J. V.
Kinderman
, “
A computing laboratory for introductory quantum mechanics
,”
Am. J. Phys.
58
,
568
573
(
1990
).
2.
A. P.
French
and
E. F.
Taylor
,
An Introduction to Quantum Physics
(
Norton
,
New York
,
1978
).
3.
P. C.
Chow
, “
Computer solutions to the Schrödinger equation
,”
Am. J. Phys.
40
,
730
734
(
1972
).
4.
I. D.
Johnston
and
D.
Segal
, “
Electrons in a crystal lattice: A simple computer model
,”
Am. J. Phys.
60
,
600
607
(
1992
).
5.
F.
Marsiglio
, “
The harmonic oscillator in quantum mechanics: A third way
,”
Am. J. Phys.
77
,
253
258
(
2009
).
6.
R. L.
Pavelich
and
F.
Marsiglio
, “
The Kronig-Penney model extended to arbitrary potentials via numerical matrix mechanics
,”
Am. J. Phys.
83
,
773
781
(
2015
).
7.
B. A.
Jugdutt
and
F.
Marsiglio
, “
Solving for three-dimensional central potentials using numerical matrix methods
,”
Am. J. Phys.
81
,
343
350
(
2013
).
8.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Pearson Prentice Hall
,
Upper Saddle River, NJ
,
2004
).
9.
See supplementary material at http://dx.doi.org/10.1119/1.4944706 for mathematica codes demonstrating our calculations.
10.
R. de L.
Kronig
and
W. G.
Penney
, “
Quantum mechanics of electrons in crystal lattices
,”
Proc. R. Soc. London A
130
,
499
513
(
1931
).
11.
W. J.
Titus
, “
Solutions of Kronig-Penney models by the T-matrix method
,”
Am. J. Phys.
41
,
512
516
(
1973
);
G. C.
Wetsel
, Jr.
, “
Calculation of the energy-band structure of the Kronig-Penney model using the nearly-free and tightly-bound-electron approximations
,”
Am. J. Phys.
46
,
714
720
(
1978
).
12.
S.
Singh
, “
Kronig-Penney model in reciprocal lattice space
,”
Am. J. Phys.
51
,
179
(
1983
);
F.
Szmulowicz
, “
Kronig-Penney model: A new solution
,”
Eur. J. Phys.
18
,
392
397
(
1997
).
13.
H.
Lippmann
, “
Remarks about the manipulation of the Kronig-Penney model for the introduction into the energy band theory of crystals
,”
Am. J. Phys.
65
,
89
92
(
1997
).
14.
F.
Szmulowicz
, “
New eigenvalue equation for the Kronig-Penney problem
,”
Am. J. Phys.
65
,
1009
1014
(
1997
).
15.
F.
Szmulowicz
, “
New Kronig–Penney equation emphasizing the band edge conditions
,”
Eur. J. Phys.
29
,
507
515
(
2008
).
16.
E.
Cota
,
J.
Flores
, and
G.
Monsivais
, “
A simple way to understand the origin of the electron band structure
,”
Am. J. Phys.
56
,
366
372
(
1988
).
17.
A. R.
Goñi
,
A. G.
Rojo
, and
E. N.
Martínez
, “
A dimerized Kronig-Penney model
,”
Am. J. Phys.
54
,
1018
1021
(
1986
).
18.
J. C.
Wolfe
, “
Summary of the Kronig-Penney electron
,”
Am. J. Phys.
46
,
1012
1014
(
1978
).
19.
I. E.
Tamm
, “
Über eine mögliche art der elektronenbindung an kristalloberfächen
,”
Phys. Z. Sowjetunion
1
,
733
746
(
1932
).
20.
S. G.
Davison
and
M.
Stęślicka
,
Basic Theory of Surface States
(
Oxford U.P.
,
Oxford
,
1996
).
21.
M.
Stęślicka
, “
Kronig-Penney model for surface states
,”
Prog. Surf. Sci.
5
,
157
259
(
1974
).
22.
M.
Stȩślicka
and
K. F.
Wojciechowski
, “
Surface states of a deformed one-dimensional crystal
,”
Physica
32
,
1274
1282
(
1966
).
23.
J.
Neuberger
and
C. R.
Fischer
, “
Tamm states at a distorted surface
,”
Physica B
79
,
350
358
(
1975
).
24.
M.
Stȩślicka
, “
Note on the existence conditions of surface states
,”
Phys. Lett. A
44
,
513
514
(
1973
).
25.
A. J.
Thakkar
and
M.
Stȩślicka
, “
Model studies of the Tamm-like and field-sustained surface states of germanium
,”
Surf. Sci.
74
,
168
180
(
1978
).
26.
A. M.
Saperstein
, “
Energy gaps in one-dimensional amorphous materials: A disordered Kronig-Penney model
,”
Am. J. Phys.
51
,
1127
1130
(
1983
).
27.
M.
Belloni
and
W.
Christian
, “
Time development in quantum mechanics using a reduced Hilbert space approach
,”
Am. J. Phys.
76
,
385
392
(
2008
). These authors have built a suite of open-source programs that employ Eq. (25) to calculate and visualize the time evolution of arbitrary bound states.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.