We demonstrate a method for constructing spacetime diagrams for special relativity on graph paper that has been rotated by 45°. The diagonal grid lines represent light-flash worldlines in Minkowski spacetime, and the boxes in the grid (called “clock diamonds”) represent units of measurement corresponding to the ticks of an inertial observer's light clock. We show that many quantitative results can be read off a spacetime diagram simply by counting boxes, with very little algebra. In particular, we show that the squared interval between two events is equal to the signed area of the parallelogram on the grid (called the “causal diamond”) with opposite vertices corresponding to those events. We use the Doppler effect—without explicit use of the Doppler formula—to motivate the method.

1.
A.
Einstein
, “
On the electrodynamics of moving bodies
” (1905) in
The Principle of Relativity
, by
A.
Einstein
,
H. A.
Lorentz
,
H.
Minkowski
, and
H.
Weyl
(
Dover
,
New York
,
1923
).
2.
H.
Minkowski
, “
Space and time
” (1909) in
The Principle of Relativity
, by
H. A.
Lorentz
,
A.
Einstein
,
H.
Minkowski
, and
H.
Weyl
(
Dover Publications
,
New York
,
1923
).
3.
G. W.
Gibbons
and
S. N.
Solodukhin
, “
The geometry of small causal diamonds
,”
Phys. Lett. B
649
,
317
324
(
2007
).
4.
See “Alexandrov interval or neighborhood” in, e.g.,
R.
Penrose
,
Techniques of Differential Topology in Relativity
(
SIAM
,
Philadelphia
,
1972
), pp.
29
33
.
5.
See “optical parallelogram” in, e.g.,
A. A.
Robb
,
A Theory of Time and Space
(
Cambridge U.P.
,
Cambridge, England
,
1914
).
6.
S.
Daubin
, “
A geometrical introduction to special relativity
,”
Am. J. Phys.
30
,
818
824
(
1962
).
7.
D.
Bohm
,
The Special Theory of Relativity
(
Benjamin
,
New York
,
1965
).
8.
Y. S.
Kim
and
M. E.
Noz
, “
Dirac's light-cone coordinate system
,”
Am. J. Phys.
50
,
721
724
(
1982
).
9.
I. M.
Yaglom
,
A Simple Non-Euclidean Geometry and its Physical Basis
(
Springer Verlag
,
Berlin
,
1978
).
10.
N. D.
Mermin
, “
Space-time intervals as light rectangles
,”
Am. J. Phys.
66
,
1077
1080
(
1998
).
11.
D.
Brill
and
T.
Jacobson
, “
Spacetime and Euclidean geometry
,”
Gen. Relativ. Gravitation
38
,
643
651
(
2006
).
12.
R. B.
Salgado
, “
Visualizing proper-time in Special Relativity
,”
Phys. Teach. (Indian Physical Society)
,
46
,
132
143
(
2004
); available at arXiv:physics/0505134v1 [physics.ed-ph]
13.
H.
Bondi
,
Relativity and Common Sense
(
Dover
,
New York
,
1962
).
14.
G. F. R.
Ellis
and
R. M.
Williams
,
Flat and Curved Space-Times
(
Oxford
,
New York
,
1988
).
15.
R. P.
Geroch
,
General Relativity from A to B
(
University of Chicago Press
,
Chicago
,
1978
).
16.
J. L.
Synge
,
Relativity: The Special Theory
(
North-Holland
,
Amsterdam
,
1956
).
17.
T. A.
Moore
,
Six Ideas That Shaped Physics, Unit R
, 2nd ed. (
McGraw-Hill
,
New York
,
2002
).
18.
E. F.
Taylor
and
J. A.
Wheeler
,
Spacetime Physics
(
W.H. Freeman
,
New York
,
1966
).
19.
E. F.
Taylor
and
J. A.
Wheeler
,
Spacetime Physics
, 2nd ed. (
W.H. Freeman
,
New York
,
1992
).
20.
T.
Dray
,
The Geometry of Special Relativity
(
CRC Press
,
Boca Raton, FL
,
2012
).
21.
T. A.
Moore
(private communication) suggested “light clock diamonds” (
2011
).
22.
P. A. M.
Dirac
, “
Forms of relativistic dynamics
,”
Rev. Mod. Phys.
21
,
392
399
(
1949
).
23.
L.
Parker
and
G. M.
Schmieg
, “
A useful form of the Minkowski diagram
,”
Am. J. Phys.
38
,
1298
1302
(
1970
).
24.

Alternate conventions for signs and factors of 1/2 would complicate the counting calculations.

25.
A. A.
Robb
,
Optical Geometry of Motion
(
Heffer
,
Cambridge
,
1911
).
26.
R. F.
Marzke
and
J. A.
Wheeler
, “
Gravitation as geometry–I: The geometry of space-time and the geometrodynamical standard meter
,” in
Gravitation and Relativity
, edited by
H.-Y.
Chui
and
W. F.
Hoffman
(
Benjamin
,
New York
,
1964
), pp.
40
64
.
27.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
W.H. Freeman
,
New York
,
1973
).
28.
J. L.
Anderson
and
R.
Gautreau
, “
Operational approach to space and time measurements in flat space
,”
Am. J. Phys.
37
,
178
189
(
1969
).
29.
C. E.
Dolby
and
S. F.
Gull
, “
On radar time and the twin ‘paradox’
,”
Am. J. Phys.
69
,
1257
1261
(
2001
).
30.
A.
Eagle
, “
A note on Dolby and Gull on radar time and the twin ‘paradox’
,”
Am. J. Phys.
73
,
976
979
(
2005
).
31.
N.
Calder
, “
Einstein's Universe
,” film produced by the BBC (
1979
).
32.

Indeed, this is one property that makes Minkowski spacetime diagrams difficult to interpret. Note, however, that Galilean spacetime diagrams (position-time graphs) also have this property.

33.

A parallelogram with edges au and bv has diagonals (au+bv) and (aubv), with dot-product (a2u·ub2v·v). Using the dot-product of Minkowski spacetime, the diagonals of a causal diamond are perpendicular to each other since the edges are lightlike (u·u=0 and v·v=0).

34.

This is equivalent to Minkowski's definition: the radius vector drawn to a point on the hyperbola is “normal” (perpendicular) to the tangent vector at that point (see Ref. 2, p. 85).

35.

When (Δx)2+(Δs)2=(Δt)2 for nonnegative integers Δx,Δs, and Δt, with Δx<Δt and ΔsΔt for future-timelike displacements, then (Δx,Δs,Δt) form a Pythagorean triple. For triples generated by Δx=λ(m2n2), Δs=λ(2mn), and Δt=λ(m2+n2), with positive integers λ, m, and n (with mn), we find k=m/n. Alternatively, when Δs=λ(m2n2) and Δx=λ(2mn), we find k=(m+n)/(mn).

36.
L.
Marder
,
Time and the Space-Traveller
(
University of Pennsylvania Press
,
Philadelphia
,
1971
).
37.
F. V.
Kowalski
, “
Accelerating light clocks
,”
Phys. Rev. A
53
,
3761
3766
(
1996
).
38.
M.
Pauri
and
M.
Vallisneri
, “
Marzke-Wheeler coordinates for accelerated observers in special relativity
,”
Found. Phys. Lett.
13
,
401
425
(
2000
).
39.
A.
Schild
, “
The clock paradox in relativity theory
,”
Am. Math. Monthly
66
,
1
18
(
1959
).
40.

The inverse transformations express the coordinates of the “lab frame” (here, Alice) in terms of those of the “moving frame” (Bob). The standard transformations (with the minus signs) are obtained by solving these equations for tEB and xEB. See p. 107 in Ref. 17.

41.
Taylor (Ref. 19 on p. 198.) had used “handles” on the energy-momentum vectors due to W. A. Shurcliff.
42.
Based on Fig. 7.6 (p. 207) in Ref. 19 and problem R10.S3 (p. 189) in Ref. 17.
43.

The relations Δu=ΔtrA and Δv=ΔteA hold only when the timelike diagonal of the causal diamond is on the forward (x0) side of the observer. However, if, for example, xB3>0 but xB2<0, then we have the less-elegant relations Δu=tr3Ate2A and Δv=te3Atr2A. Hence, we restrict to the case x0 for simplicity.

44.
See Ref. 15, pp. 91–96, Ref. 16, p. 26, and Ref. 25, p. 31.
45.
N. J.
Wildberger
, “
Chromogeometry and relativistic conics
,”
KoG
,
13
,
43
50
(
2009
).
46.
W.
Christian
, computer program, Special Relativity on Rotated Graph Paper Model, Ver. 1.0 (
2011
), <http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11540&DocID=2464>.
47.
P.
Bamberg
and
S.
Sternberg
,
A Course in Mathematics for Students of Physics
(
Cambridge U. P.
,
Cambridge, England
,
1991
), Vol. 1, pp
1
2
, and 35.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.