The role of “semi-classical” (Bohr–Sommerfeld) and “semi-quantum-mechanical” (atomic orbital) models in the context of the teaching of atomic theory is considered. It is suggested that an appropriate treatment of such models can serve as a useful adjunct to quantum mechanical study of atomic systems.

1.
A.
Sommerfeld
, “
Zur quantentheorie der spektrallinien
,”
Ann. Phys.
17
,
1
94
(
1916
).
2.
E.
Schrödinger
, “
Quantisierung als eigenwertproblem (Erste Mitteilung)
,”
Ann. Phys.
79
,
361
376
(
1926
).
3.
T. S.
Garon
,
N.
Mann
, and
E. M.
McManis
, “
Re-examining the value of old quantization and the Bohr atom approach
,”
Am. J. Phys.
81
,
92
98
(
2013
).
4.
P.
Corkum
, “
Recollision physics
,”
Phys. Today
64
(
3
),
36
41
(
2011
).
5.
M.
Mansfield
and
C.
O'Sullivan
,
Understanding Physics
, 2nd ed. (
Wiley
,
Chichester
,
2011
), Sec. 5.11.
6.
W.
Wilson
, “
The quantum-theory of radiation and line spectra
,”
Philos. Mag.
29
,
795
802
(
1915
).
7.
J.
Ishiwara
, “
Universelle bedeutung des wirkungsquantum
,”
Proc. Tokyo Math.-Phys. Soc.
8
,
173
186
(
1915
).
8.
T.
Deeney
and
C.
O'Sullivan
, “
Sommerfeld's elliptical atomic orbits revisited: A useful preliminary to the study of quantum mechanics
,”
Am. J. Phys.
82
(
9
),
883
886
(
2014
).
9.
A.
Sommerfeld
,
Atombau und Spektrallinien
(
Friedrich Vieweg und Sohn
,
Braunschweig
,
1919
). Translation in English of the third edition by H. L. Brose, Atomic Structure and Spectral Lines (Methuen, London 1923); available at <http://archive.org/stream/AtomicStructureAndSpectralLines/Sommerfeld-AtomicStructureAndSpectralLines#page/n3/mode/2up>.
10.
R. B.
Lindsay
, “
Note on pendulum orbits in atomic models
,”
Proc. Natl. Acad. Sci. U.S.A.
13
(
6
)
413
419
(
1927
).
11.
H.
Geiger
and
E.
Marsden
, “
On a diffuse reflection of the α-particles
,”
Proc. R. Soc. London, Ser. A
82
,
495
500
(
1909
).
12.
I. L.
Levine
,
Quantum Chemistry
, 5th ed. (
Prentice Hall
,
NJ
,
2000
).
13.
A.
Woody
, “
Putting quantum mechanics to work in chemistry: The power of diagrammatic representation
,”
Philos. Sci.
67
,
S612
S627
(
2000
).
14.
E. G. P.
Rowe
, “
The classical limit of quantum mechanical hydrogen radial distributions
,”
Eur. J. Phys.
8
(
2
),
81
87
(
1987
).
15.
A.
Martn-Ruiz
,
J.
Bernal
,
A.
Frank
, and
A.
Carbajal-Dominguez
, “
The classical limit of the quantum Kepler problem
,”
J. Mod. Phys.
4
,
818
822
(
2013
).
16.
A.
Svidzinsky
,
M.
Scully
, and
D.
Herschbach
, “
Bohr's molecular model, a century later
,”
Phys. Today
67
(
1
),
33
39
(
2014
).
17.
M. Y.
Amusia
, “
Bohr's molecular model and the melding of classical and quantum mechanics
,”
Phys. Today
67
(
8
),
8
(
2014
).
18.
L.
Mlodinow
, “
Bohr's molecular model and the melding of classical and quantum mechanics
,”
Phys. Today
67
(
8
),
8
(
2014
).
19.
P.
Grujic
, “
Bohr's molecular model and the melding of classical and quantum mechanics
,”
Phys. Today
67
(
8
),
8
9
(
2014
).
20.
A.
Svidzinsky
,
M.
Scully
, and
D.
Herschbach
, “
Bohr's molecular model and the melding of classical and quantum mechanics
,”
Phys. Today
67
(
8
),
10
(
2014
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.