We present a geometric-analytic introductory treatment of polarization based on the circular polarization basis, which connects directly to the Poincaré sphere. This treatment enables a more intuitive way to arrive at the polarization ellipse from the components of the field. We also present an advanced optics lab that uses Poincaré beams, which have a polarization that is spatially variable. The physics of this lab can reinforce understanding of all states of polarization, and in particular, elliptical polarization. In addition, it exposes students to Laguerre-Gauss modes, the spatial modes used in creating Poincaré beams, which have unique physical properties. In performing this lab, students gain experience in experimental optics, such as aligning and calibrating optical components, using and programming a spatial light modulator, building an interferometer, and performing polarimetry measurements. We present the apparatus for doing the experiments, detailed alignment instructions, and lower-cost alternatives.

1.
P. J.
Collings
and
M.
Hird
,
Introduction to Liquid Crystals: Chemistry and Physics
(
Taylor and Francis
,
Philadelphia, PA
,
2004
).
2.
E.
Hecht
,
Optics
(
Addison-Wesley
,
Reading, MA
,
2002
).
3.
F. L.
Pedrotti
,
L. M.
Pedrotti
, and
L. S.
Pedrotti
,
Introduction to Optics
(
Pearson Education, Inc.
,
Upper Saddle River, NJ
,
2013
).
4.
C. A.
Bennett
,
Principles of Physical Optics
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2008
).
5.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge, U.P.
,
Cambridge
,
1999
).
6.
M. F.
Masters
and
T. T.
Grove
, “
Active learning in intermediate optics through concept building laboratories
,”
Am. J. Phys.
78
,
485
491
(
2010
).
7.
T. W.
Mayes
, “
Polar intensity profile of elliptically polarized light
,”
Am. J. Phys.
44
,
1101
1103
(
1976
).
8.
A. R.
Tanguay
, Jr.
, “
Comment on ‘Polar intensity profile of elliptically polarized light
,”
Am. J. Phys.
45
,
873
874
(
1977
).
9.
T. W.
Mayes
, “
Further comment on ‘Polar intensity profile of elliptically polarized light
,”
Am. J. Phys.
45
,
874
875
(
1977
).
10.
A. J.
Cox
, “
Quantitative analysis of elliptically polarized light
,”
Am. J. Phys.
46
,
302
303
(
1978
).
11.
S.
Trester
, “
On determining the phase difference introduced by a phase plate producing elliptically polarized light
,”
Am. J. Phys.
61
,
62
66
(
1993
).
12.
P. C. B.
Fernando
and
S.
Samarasinghe
, “
A technique for experimentally observing the polarization ellipse
,”
Am. J. Phys.
64
,
565
568
(
1996
).
13.
S. D.
Cloud
, “
Birefringence experiments for the introductory physics course
,”
Am. J. Phys.
41
,
1184
1188
(
1973
).
14.
M. A.
Blanco
,
M.
Yuste
, and
C.
Carreras
, “
Undergraduate experiment designed to show the proportionality between the phase difference and the thickness of a uniaxial crystal
,”
Am. J. Phys.
65
,
784
787
(
1997
).
15.
A.
Belendez
,
E.
Fernandez
,
J.
Frances
, and
C.
Neipp
, “
Birefringence of cellotape: Jones representation and experimental analysis
,”
Eur. J. Phys.
31
,
551
561
(
2010
).
16.
P.
Velasquez
,
M.
del Mar Sanchez-Lopez
,
I.
Moreno
,
D.
Puerto
, and
F.
Mateos
, “
Interference birefringent filters fabricated with low cost commercial polymers
,”
Am. J. Phys.
73
,
357
361
(
2005
).
17.
W. B.
Schneider
, “
A surprising optical property of plexiglass rods–-An unusual approach to birefringence
,”
Am. J. Phys.
59
,
1086
1087
(
1991
).
18.
K. J.
Braun
,
C. R.
Lytle
,
J. A.
Kavanaugh
,
J. A.
Thielen
, and
A. S.
Green
, “
A simple inexpensive photoelastic modulator
,”
Am. J. Phys.
77
,
13
19
(
2009
).
19.
S. H.
Burns
and
M. A.
Jeppesen
, “
Photographing and projecting crystal patterns in convergent polarized light
,”
Am. J. Phys.
28
,
774
776
(
1960
).
20.
L. A.
Ageev
and
V. D.
Yegorenkov
, “
A device for demonstrating interference fringes in electro-optic effect in crystals
,”
Am. J. Phys.
67
,
837
838
(
1999
).
21.
P. H.
Äyräs
,
A. T.
Friberg
,
M. A. J.
Kaivola
, and
M. M.
Salamaa
, “
Conoscopic interferometry of surface-acoustic-wave substrate crystals
,”
Appl. Opt.
38
,
5399
5407
(
1999
).
22.
W.
Neese
,
Introduction to Optical Mineralogy
(
Oxford U.P.
,
New York
,
2012
).
23.
B. S.
Perkalskis
, “
Use of cellophane and similar materials as replacement for crystals in demonstration of conoscopic pictures
,”
Am. J. Phys.
78
,
1434
(
2010
).
24.
Y.
Zhang
,
L.
Chen
,
S.
Wang
, and
H.
Zhou
, “
Formation of birefringence patterns under everyday conditions
,”
Eur. J. Phys.
35
,
055008
(
2014
).
25.
P. R.
Camp
, “
Transparency film for demonstration of biaxial optics
,”
Am. J. Phys.
62
,
859
860
(
1994
).
26.
M. V.
Berry
,
R.
Bhandari
, and
S.
Klein
, “
Black plastic sandwiches demonstrating biaxial optical anisotropy
,”
Eur. J. Phys.
20
,
1
14
(
1999
).
27.
M.
Pečar
and
M.
Čepič
, “
Conoscopic figure: a complex consequence of a not so simple phenomenon
,”
Eur. J. Phys.
36
,
015014
(
2015
).
28.
E. F.
Carr
and
J. P.
McClymer
, “
A laboratory experiment on interference of polarized light using a liquid crystal
,”
Am. J. Phys.
59
,
366
367
(
1991
).
29.
D. K.
Shenoy
, “
Measurement of liquid crystal refractive indices
,”
Am. J. Phys.
62
,
858
859
(
1994
).
30.
J.
Pavlin
,
N.
Vaupotič
, and
M.
Čepič
, “
Direction dependence of the extraordinary refraction index in uniaxial nematic liquid crystals
,”
Eur. J. Phys.
34
,
331
344
(
2013
).
31.
A. M.
Beckley
,
T. G.
Brown
, and
M. A.
Alonso
, “
Full Poincaré beams II: partial polarization
,”
Opt. Express
20
,
9357
9362
(
2012
).
32.
E. J.
Galvez
,
S.
Khadka
,
W. H.
Schubert
, and
S.
Nomoto
, “
Poincaré-beam patterns produced by non-separable superpositions of Laguerre-Gauss and polarization modes of light
,”
Appl. Opt.
51
,
2925
2934
(
2012
).
33.
F.
Cardano
,
E.
Karimi
,
L.
Marrucci
,
C.
de Lisio
, and
E.
Santamato
, “
Generation and dynamics of optical beams with polarization singularities
,”
Opt. Express
21
,
8815
8820
(
2013
).
34.
G.
Piquero
and
J.
Vargas-Balbuena
, “
Non-uniformly polarized beams across their transverse profiles: and introductory study for undergraduate optics courses
,”
Eur. J. Phys.
25
,
793
800
(
2004
).
35.
B. M.
Rodríguez-Lara
and
I.
Ricardez-Vargas
, “
Interference with polarized light beams: Generation of spatially varying polarization
,”
Am. J. Phys.
77
,
1135
1143
(
2009
).
36.
Q.
Zhan
, “
Cylindrical vector beams: From mathematical concepts to applications
,”
Adv. Opt. Photonics
1
,
1
57
(
2009
).
37.
J.
Kalwe
,
M.
Neugebauer
,
C.
Ominde
,
G.
Leuchs
,
G.
Rurimo
, and
P.
Banzer
, “
Exploiting cellophane birefringence to generate radially and azimutally polarised vector beams
,”
Eur. J. Phys.
36
,
025011
(
2015
).
38.
S.
Slussarenko
,
A.
Murauski
,
T.
Du
,
V.
Chigrinov
,
L.
Marrucci
, and
E.
Santamato
, “
Tunable liquid crystal q-plates with arbitrary topological charge
,”
Opt. Express
19
,
4085
4090
(
2011
).
39.
B. R.
Boruah
, “
Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator
,”
Am. J. Phys.
77
,
331
336
(
2009
).
40.
D.
Huang
,
H.
Timmers
,
A.
Roberts
,
N.
Shivaram
, and
A. S.
Sandhu
, “
A low-cost spatial light modulator for use in undergraduate and graduate optics labs
,”
Am. J. Phys.
80
,
211
215
(
2012
).
41.
L.
Allen
,
S. M.
Barnett
, and
M. J.
Padgett
,
Optical Angular Momentum
(
Institute of Physics
,
Bristol, UK
,
2003
).
42.
M. J.
Padgett
,
J.
Arlt
,
N.
Simpson
, and
L.
Allen
, “
An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes
,”
Am. J. Phys.
64
,
77
82
(
1996
).
43.
E. J.
Galvez
, “
Gaussian beams in the optics course
,”
Am. J. Phys.
74
,
355
361
(
2006
).
44.
A. V.
Carpentier
,
H.
Michinel
,
J. R.
Salgueiro
, and
D.
Olivieri
, “
Making optical vortices with computer-generated holograms
,”
Am. J. Phys.
76
,
916
921
(
2008
).
45.
E.
Collett
,
Polarized Light: Fundamentals and Applications
(
Marcel Dekker, Inc.
,
New York
,
1993
).
46.
W. H.
Beyer
,
CRC Standard Mathematical Tables
(
CRC Press
,
Boca Raton, FL
,
1981
).
47.
B.
Schumacher
and
M.
Westmoreland
,
Quantum Processes Systems and Information
(
Cambridge U.P.
,
Cambridge
,
2010
).
48.
A.
Niv
,
G.
Biener
,
V.
Kleiner
, and
E.
Hasman
, “
Rotating vectorial vortices produced by space-variant sub wavelength gratings
,”
Opt. Lett.
30
,
2933
2935
(
2005
).
49.
G. F.
Brand
, “
Phase singularities in beams
,”
Am. J. Phys.
67
,
55
60
(
1999
).
50.
L.
Allen
,
M. W.
Beijersbergen
,
R. J. C.
Spreeuw
, and
J. P.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
8189
(
1992
).
51.
S. M.
Baumann
,
D. M.
Kalb
,
L. H.
MacMillan
, and
E. J.
Galvez
, “
Propagation dynamics of optical vortices due to Gouy phase
,”
Opt. Express
17
,
9818
9827
(
2009
).
52.
J. F.
Nye
,
Natural Focusing and Fine Structure of Light
(
Institute of Physics
,
Bristol, UK
,
1999
).
53.
M. R.
Dennis
, “
Polarization singularities in paraxial vector fields: morphology and statistics
,”
Opt. Commun.
213
,
201
221
(
2002
).
54.
I.
Freund
, “
Polarization singularity indices in Gaussian laser beams
,”
Opt. Commun.
201
,
251
270
(
2002
).
55.
M. V.
Berry
and
J. H.
Hannay
, “
Umbilic points on Gaussian random surfaces
,”
J. Phys. A
10
,
1809
1821
(
1977
).
56.
I.
Freund
,
M. S.
Soskin
, and
A. I.
Mokhun
, “
Elliptic critical points in paraxial optical fields
,”
Opt. Commun.
208
,
223
253
(
2002
).
57.
See supplementary material at http://dx.doi.org/10.1119/1.4960468E-AJPIAS-84-007609 for matlab code and pictures and also at <http://departments.colgate.edu/physics/gpl.htm>.
58.
E. J.
Galvez
,
B. L.
Rojec
, and
K.
Beach
, “
Mapping of all polarization-singularity C-point morphologies
,”
Proc. SPIE
8999
,
89990I
(
2014
).
59.
E. J.
Galvez
,
B. L.
Rojec
,
V.
Kumar
, and
N. K.
Viswanathan
, “
Generation of isolated asymmetric umbilics in light's polarization
,”
Phys. Rev. A
89
,
031801
(
2014
).
60.
M.
Reicherter
,
T.
Haist
,
E. U.
Wagemann
, and
H. J.
Tiziani
, “
Optical particle trapping with computer-generated holograms written on a liquid-crystal display
,”
Opt. Lett.
24
,
608
610
(
1999
).
61.
R.
Bowman
,
V.
D’Ambrosio
,
E.
Rubino
,
O.
Jedrkiewicz
,
P.
Di Trapani
, and
M. J.
Padgett
, “
Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression
,”
Eur. Phys. J. Special Topics
199
,
149
158
(
2011
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.